philippds's picture
Update README.md
0e71c39 verified
metadata
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_6_task_3_run_id_1_train
tags:
  - hivex
  - hivex-drone-based-reforestation
  - reinforcement-learning
  - multi-agent-reinforcement-learning
model-index:
  - name: hivex-DBR-PPO-baseline-task-3-difficulty-6
    results:
      - task:
          type: sub-task
          name: drop_seed
          task-id: 3
          difficulty-id: 6
        dataset:
          name: hivex-drone-based-reforestation
          type: hivex-drone-based-reforestation
        metrics:
          - type: cumulative_distance_reward
            value: 1.3454772663116454 +/- 0.25212101346663623
            name: Cumulative Distance Reward
            verified: true
          - type: cumulative_distance_until_tree_drop
            value: 48.78826332092285 +/- 5.743127534874983
            name: Cumulative Distance Until Tree Drop
            verified: true
          - type: cumulative_distance_to_existing_trees
            value: 64.26434959411621 +/- 5.284372460543501
            name: Cumulative Distance to Existing Trees
            verified: true
          - type: cumulative_normalized_distance_until_tree_drop
            value: 0.1345477257668972 +/- 0.02521210110839935
            name: Cumulative Normalized Distance Until Tree Drop
            verified: true
          - type: cumulative_tree_drop_reward
            value: 4.1371043682098385 +/- 0.5887544719292628
            name: Cumulative Tree Drop Reward
            verified: true
          - type: out_of_energy_count
            value: 0.031587274074554444 +/- 0.021537219176821762
            name: Out of Energy Count
            verified: true
          - type: recharge_energy_count
            value: 10.989339809417725 +/- 0.5768743885606192
            name: Recharge Energy Count
            verified: true
          - type: tree_drop_count
            value: 0.9577047204971314 +/- 0.02966963426330889
            name: Tree Drop Count
            verified: true
          - type: cumulative_reward
            value: 102.36149932861328 +/- 3.0284734534759377
            name: Cumulative Reward
            verified: true

This model serves as the baseline for the Drone-Based Reforestation environment, trained and tested on task 3 with difficulty 6 using the Proximal Policy Optimization (PPO) algorithm.

Environment: Drone-Based Reforestation
Task: 3
Difficulty: 6
Algorithm: PPO
Episode Length: 2000
Training max_steps: 1200000
Testing max_steps: 300000

Train & Test Scripts
Download the Environment