|
--- |
|
library_name: hivex |
|
original_train_name: DroneBasedReforestation_difficulty_5_task_1_run_id_1_train |
|
tags: |
|
- hivex |
|
- hivex-drone-based-reforestation |
|
- reinforcement-learning |
|
- multi-agent-reinforcement-learning |
|
model-index: |
|
- name: hivex-DBR-PPO-baseline-task-1-difficulty-5 |
|
results: |
|
- task: |
|
type: sub-task |
|
name: find_closest_forest_perimeter |
|
task-id: 1 |
|
difficulty-id: 5 |
|
dataset: |
|
name: hivex-drone-based-reforestation |
|
type: hivex-drone-based-reforestation |
|
metrics: |
|
- type: out_of_energy_count |
|
value: 0.013677190858870744 +/- 0.015857580403509562 |
|
name: Out of Energy Count |
|
verified: true |
|
- type: cumulative_reward |
|
value: 98.19454025268554 +/- 2.013315524136616 |
|
name: Cumulative Reward |
|
verified: true |
|
--- |
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>1</code> with difficulty <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>1</code><br>Difficulty: <code>5</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |