philippds's picture
Update README.md
a7c7133 verified
---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_10_task_6_run_id_1_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-6-difficulty-10
results:
- task:
type: sub-task
name: drop_water
task-id: 6
difficulty-id: 10
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.01919534709304571 +/- 0.004891916336268155
name: Crash Count
verified: true
- type: extinguishing_trees
value: 0.14774187933653593 +/- 0.21025496427030596
name: Extinguishing Trees
verified: true
- type: extinguishing_trees_reward
value: 0.7387093845754862 +/- 1.0512748048411527
name: Extinguishing Trees Reward
verified: true
- type: preparing_trees
value: 275.08778228759763 +/- 6.872679334348032
name: Preparing Trees
verified: true
- type: preparing_trees_reward
value: 275.08778228759763 +/- 6.872679334348032
name: Preparing Trees Reward
verified: true
- type: water_drop
value: 0.9804799735546113 +/- 0.0052643568095604555
name: Water Drop
verified: true
- type: water_pickup
value: 0.0006513423752039671 +/- 0.0012320225884513893
name: Water Pickup
verified: true
- type: cumulative_reward
value: 273.9627319335938 +/- 7.442108906238094
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>6</code> with difficulty <code>10</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Aerial Wildfire Suppression**<br>
Task: <code>6</code><br>
Difficulty: <code>10</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>3000</code><br>
Training <code>max_steps</code>: <code>1800000</code><br>
Testing <code>max_steps</code>: <code>180000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)
[hivex-paper]: https://arxiv.org/abs/2501.04180