philippds's picture
Upload README.md
61e04ad verified
|
raw
history blame
2.6 kB
metadata
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_5_task_1_run_id_2_train
tags:
  - hivex
  - hivex-aerial-wildfire-suppression
  - reinforcement-learning
  - multi-agent-reinforcement-learning
model-index:
  - name: hivex-AWS-PPO-baseline-task-1-difficulty-5
    results:
      - task:
          type: sub-task
          name: maximize_extinguished_burning_trees
          task-id: 1
          difficulty-id: 5
        dataset:
          name: hivex-aerial-wildfire-suppression
          type: hivex-aerial-wildfire-suppression
        metrics:
          - type: crash_count
            value: 0.15833333656191825 +/- 0.19098850564751765
            name: Crash Count
            verified: true
          - type: extinguishing_trees
            value: 20.000000047683717 +/- 35.87091048765571
            name: Extinguishing Trees
            verified: true
          - type: extinguishing_trees_reward
            value: 999.9999992370606 +/- 1793.545528264617
            name: Extinguishing Trees Reward
            verified: true
          - type: fire_out
            value: 0.10000000298023223 +/- 0.244231706300354
            name: Fire Out
            verified: true
          - type: fire_too_close_to_city
            value: 0.925 +/- 0.24468024246479642
            name: Fire too Close to City
            verified: true
          - type: preparing_trees
            value: 439.2000018119812 +/- 486.4487458526075
            name: Preparing Trees
            verified: true
          - type: preparing_trees_reward
            value: 439.2000018119812 +/- 486.4487458526075
            name: Preparing Trees Reward
            verified: true
          - type: water_drop
            value: 35.9416666328907 +/- 21.80430457793747
            name: Water Drop
            verified: true
          - type: water_pickup
            value: 35.77500002980232 +/- 21.714001930720748
            name: Water Pickup
            verified: true
          - type: cumulative_reward
            value: 1192.8983428001404 +/- 1401.6480393641084
            name: Cumulative Reward
            verified: true

This model serves as the baseline for the Aerial Wildfire Suppression environment, trained and tested on task 1 with difficulty 5 using the Proximal Policy Optimization (PPO) algorithm.

Environment: Aerial Wildfire Suppression
Task: 1
Difficulty: 5
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test Scripts
Download the Environment