bert-finetuned-ner / README.md
hippoleveque's picture
Training complete
48e8f30 verified
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0636
- Precision: 0.9321
- Recall: 0.9495
- F1: 0.9407
- Accuracy: 0.9859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0758 | 1.0 | 1756 | 0.0650 | 0.9023 | 0.9329 | 0.9173 | 0.9825 |
| 0.0354 | 2.0 | 3512 | 0.0666 | 0.9316 | 0.9465 | 0.9390 | 0.9853 |
| 0.0213 | 3.0 | 5268 | 0.0636 | 0.9321 | 0.9495 | 0.9407 | 0.9859 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2