hiieu commited on
Commit
0a09f76
·
verified ·
1 Parent(s): 96e50d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md CHANGED
@@ -58,6 +58,10 @@ print(tokenizer.decode(response, skip_special_tokens=True))
58
  ```
59
 
60
  ### Function Calling
 
 
 
 
61
  ```python
62
  functions_metadata = [
63
  {
@@ -81,9 +85,41 @@ functions_metadata = [
81
  }
82
  ]
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  messages = [
85
  { "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall>\n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""},
86
  { "role": "user", "content": "What is the temperature in Tokyo right now?"},
 
87
  { "role": "assistant", "content": """<functioncall> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} </functioncall>"""},
88
  { "role": "user", "content": """<function_response> {"temperature":30 C} </function_response>"""}
89
  ]
 
58
  ```
59
 
60
  ### Function Calling
61
+ Function calling requires two step inferences, below is the example:
62
+
63
+ ## Step 1:
64
+
65
  ```python
66
  functions_metadata = [
67
  {
 
85
  }
86
  ]
87
 
88
+ messages = [
89
+ { "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall>\n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""},
90
+ { "role": "user", "content": "What is the temperature in Tokyo right now?"}
91
+ ]
92
+
93
+ input_ids = tokenizer.apply_chat_template(
94
+ messages,
95
+ add_generation_prompt=True,
96
+ return_tensors="pt"
97
+ ).to(model.device)
98
+
99
+ terminators = [
100
+ tokenizer.eos_token_id,
101
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
102
+ ]
103
+
104
+ outputs = model.generate(
105
+ input_ids,
106
+ max_new_tokens=256,
107
+ eos_token_id=terminators,
108
+ do_sample=True,
109
+ temperature=0.6,
110
+ top_p=0.9,
111
+ )
112
+ response = outputs[0][input_ids.shape[-1]:]
113
+ print(tokenizer.decode(response, skip_special_tokens=True))
114
+ # >> <functioncall> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} </functioncall>"""}
115
+ ```
116
+ ## Step 2:
117
+
118
+ ```python
119
  messages = [
120
  { "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall>\n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""},
121
  { "role": "user", "content": "What is the temperature in Tokyo right now?"},
122
+ // You will get the previous prediction, extract it will the tag <functioncall>, execute it and append it to the messages like below:
123
  { "role": "assistant", "content": """<functioncall> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} </functioncall>"""},
124
  { "role": "user", "content": """<function_response> {"temperature":30 C} </function_response>"""}
125
  ]