hiendang7613's picture
commit_9
3a36788 verified
|
raw
history blame
1.42 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - fjd_dataset
model-index:
  - name: xlmr-lstm-crf-resume-ner4
    results: []

xlmr-lstm-crf-resume-ner4

This model is a fine-tuned version of xlm-roberta-base on the fjd_dataset dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.1764
  • eval_precision: 0.5811
  • eval_recall: 0.5602
  • eval_f1: 0.5705
  • eval_accuracy: 0.9501
  • eval_runtime: 52.6822
  • eval_samples_per_second: 94.415
  • eval_steps_per_second: 2.961
  • epoch: 4.0
  • step: 3680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1