heroza's picture
End of training
e392f6c verified
|
raw
history blame
7.51 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - image-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: segformer-finetuned-biofilm2_train
    results: []

segformer-finetuned-biofilm2_train

This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm2_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0761
  • Mean Iou: 0.8665
  • Mean Accuracy: 0.9765
  • Overall Accuracy: 0.9745
  • Accuracy Background: 0.9741
  • Accuracy Biofilm: 0.9789
  • Iou Background: 0.9722
  • Iou Biofilm: 0.7608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Biofilm Iou Background Iou Biofilm
0.1611 1.0 298 0.1220 0.8393 0.9547 0.9687 0.9714 0.9379 0.9660 0.7126
0.07 2.0 596 0.0682 0.8795 0.9359 0.9795 0.9881 0.8837 0.9779 0.7811
0.0542 3.0 894 0.0564 0.8862 0.9735 0.9793 0.9805 0.9666 0.9775 0.7948
0.0508 4.0 1192 0.0517 0.8888 0.9728 0.9799 0.9814 0.9643 0.9782 0.7993
0.0491 5.0 1490 0.0479 0.8999 0.9727 0.9824 0.9843 0.9611 0.9809 0.8190
0.0496 6.0 1788 0.0665 0.8733 0.9728 0.9764 0.9770 0.9686 0.9743 0.7724
0.047 7.0 2086 0.0475 0.8936 0.9744 0.9810 0.9823 0.9664 0.9793 0.8079
0.0403 8.0 2384 0.0513 0.8897 0.9699 0.9803 0.9823 0.9575 0.9786 0.8008
0.0336 9.0 2682 0.0597 0.8736 0.9790 0.9761 0.9756 0.9824 0.9740 0.7732
0.036 10.0 2980 0.0602 0.8789 0.9781 0.9774 0.9773 0.9789 0.9755 0.7824
0.0335 11.0 3278 0.0519 0.8849 0.9670 0.9793 0.9818 0.9522 0.9775 0.7923
0.0364 12.0 3576 0.0684 0.8718 0.9810 0.9756 0.9745 0.9874 0.9734 0.7702
0.0423 13.0 3874 0.0637 0.8767 0.9742 0.9771 0.9777 0.9707 0.9751 0.7783
0.0354 14.0 4172 0.0618 0.8773 0.9692 0.9775 0.9791 0.9593 0.9755 0.7790
0.0335 15.0 4470 0.0547 0.8788 0.9686 0.9778 0.9797 0.9574 0.9759 0.7816
0.0318 16.0 4768 0.0567 0.8841 0.9744 0.9788 0.9797 0.9691 0.9770 0.7913
0.0296 17.0 5066 0.0653 0.8678 0.9741 0.9749 0.9751 0.9732 0.9727 0.7628
0.0291 18.0 5364 0.0591 0.8757 0.9718 0.9770 0.9780 0.9657 0.9750 0.7765
0.0311 19.0 5662 0.0716 0.8682 0.9753 0.9750 0.9749 0.9756 0.9728 0.7637
0.0322 20.0 5960 0.0837 0.8506 0.9773 0.9703 0.9690 0.9857 0.9677 0.7335
0.0317 21.0 6258 0.0728 0.8673 0.9749 0.9748 0.9747 0.9751 0.9726 0.7621
0.0318 22.0 6556 0.0571 0.8796 0.9764 0.9777 0.9779 0.9748 0.9757 0.7835
0.0288 23.0 6854 0.0734 0.8689 0.9798 0.9749 0.9739 0.9858 0.9727 0.7651
0.0271 24.0 7152 0.0763 0.8615 0.9757 0.9733 0.9728 0.9785 0.9709 0.7521
0.0236 25.0 7450 0.0615 0.8789 0.9761 0.9775 0.9778 0.9744 0.9756 0.7823
0.025 26.0 7748 0.0694 0.8684 0.9768 0.9750 0.9746 0.9790 0.9727 0.7640
0.0269 27.0 8046 0.0672 0.8700 0.9688 0.9757 0.9771 0.9605 0.9736 0.7664
0.0286 28.0 8344 0.0717 0.8695 0.9761 0.9753 0.9751 0.9771 0.9731 0.7659
0.0255 29.0 8642 0.0680 0.8696 0.9757 0.9753 0.9752 0.9761 0.9731 0.7661
0.0255 30.0 8940 0.0701 0.8691 0.9756 0.9752 0.9751 0.9762 0.9730 0.7651
0.0223 31.0 9238 0.0715 0.8687 0.9746 0.9751 0.9752 0.9740 0.9730 0.7644
0.0226 32.0 9536 0.0757 0.8667 0.9770 0.9745 0.9740 0.9799 0.9723 0.7612
0.022 33.0 9834 0.0773 0.8661 0.9766 0.9744 0.9739 0.9793 0.9721 0.7601
0.0217 33.56 10000 0.0761 0.8665 0.9765 0.9745 0.9741 0.9789 0.9722 0.7608

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1