metadata
license: mit
tags:
- generated_from_trainer
datasets:
- crows_pairs
metrics:
- accuracy
model-index:
- name: gpt2_crows_pairs_finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: crows_pairs
type: crows_pairs
config: crows_pairs
split: test
args: crows_pairs
metrics:
- name: Accuracy
type: accuracy
value: 0.5066225165562914
gpt2_crows_pairs_finetuned
This model is a fine-tuned version of gpt2 on the crows_pairs dataset. It achieves the following results on the evaluation set:
- Loss: 5.0353
- Accuracy: 0.5066
- Tp: 0.3046
- Tn: 0.2020
- Fp: 0.2748
- Fn: 0.2185
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
---|---|---|---|---|---|---|---|---|
0.9942 | 1.05 | 20 | 0.6944 | 0.4801 | 0.0464 | 0.4338 | 0.0430 | 0.4768 |
0.6962 | 2.11 | 40 | 0.6909 | 0.5397 | 0.4205 | 0.1192 | 0.3576 | 0.1026 |
0.6711 | 3.16 | 60 | 0.7195 | 0.5 | 0.3344 | 0.1656 | 0.3113 | 0.1887 |
0.5148 | 4.21 | 80 | 0.8547 | 0.5232 | 0.2583 | 0.2649 | 0.2119 | 0.2649 |
0.3053 | 5.26 | 100 | 1.1929 | 0.4868 | 0.2483 | 0.2384 | 0.2384 | 0.2748 |
0.1268 | 6.32 | 120 | 1.7763 | 0.4901 | 0.2384 | 0.2517 | 0.2252 | 0.2848 |
0.0999 | 7.37 | 140 | 2.3687 | 0.5066 | 0.2914 | 0.2152 | 0.2616 | 0.2318 |
0.0374 | 8.42 | 160 | 2.3493 | 0.5099 | 0.2781 | 0.2318 | 0.2450 | 0.2450 |
0.009 | 9.47 | 180 | 5.1845 | 0.4868 | 0.3179 | 0.1689 | 0.3079 | 0.2053 |
0.0316 | 10.53 | 200 | 3.6149 | 0.4934 | 0.3013 | 0.1921 | 0.2848 | 0.2219 |
0.0223 | 11.58 | 220 | 3.7626 | 0.4934 | 0.2384 | 0.2550 | 0.2219 | 0.2848 |
0.0295 | 12.63 | 240 | 2.9512 | 0.5232 | 0.3411 | 0.1821 | 0.2947 | 0.1821 |
0.0248 | 13.68 | 260 | 3.5709 | 0.5066 | 0.3146 | 0.1921 | 0.2848 | 0.2086 |
0.0387 | 14.74 | 280 | 3.5248 | 0.4801 | 0.2318 | 0.2483 | 0.2285 | 0.2914 |
0.0223 | 15.79 | 300 | 3.7220 | 0.5066 | 0.2483 | 0.2583 | 0.2185 | 0.2748 |
0.0223 | 16.84 | 320 | 4.1806 | 0.5033 | 0.2384 | 0.2649 | 0.2119 | 0.2848 |
0.0254 | 17.89 | 340 | 4.4477 | 0.4934 | 0.2351 | 0.2583 | 0.2185 | 0.2881 |
0.0002 | 18.95 | 360 | 4.2539 | 0.5298 | 0.2649 | 0.2649 | 0.2119 | 0.2583 |
0.0238 | 20.0 | 380 | 3.9944 | 0.5033 | 0.2318 | 0.2715 | 0.2053 | 0.2914 |
0.0027 | 21.05 | 400 | 4.6360 | 0.5066 | 0.2285 | 0.2781 | 0.1987 | 0.2947 |
0.0001 | 22.11 | 420 | 5.0025 | 0.5132 | 0.2616 | 0.2517 | 0.2252 | 0.2616 |
0.0135 | 23.16 | 440 | 4.2408 | 0.5 | 0.2152 | 0.2848 | 0.1921 | 0.3079 |
0.0004 | 24.21 | 460 | 4.9804 | 0.5066 | 0.2781 | 0.2285 | 0.2483 | 0.2450 |
0.0213 | 25.26 | 480 | 5.5604 | 0.4967 | 0.3046 | 0.1921 | 0.2848 | 0.2185 |
0.0147 | 26.32 | 500 | 5.0523 | 0.5066 | 0.2815 | 0.2252 | 0.2517 | 0.2417 |
0.011 | 27.37 | 520 | 4.8651 | 0.5132 | 0.2682 | 0.2450 | 0.2318 | 0.2550 |
0.012 | 28.42 | 540 | 4.5382 | 0.5232 | 0.3278 | 0.1954 | 0.2815 | 0.1954 |
0.0024 | 29.47 | 560 | 4.0583 | 0.5033 | 0.2848 | 0.2185 | 0.2583 | 0.2384 |
0.0001 | 30.53 | 580 | 4.4274 | 0.4967 | 0.2980 | 0.1987 | 0.2781 | 0.2252 |
0.0005 | 31.58 | 600 | 4.6131 | 0.5099 | 0.2980 | 0.2119 | 0.2649 | 0.2252 |
0.0008 | 32.63 | 620 | 4.7104 | 0.5132 | 0.2748 | 0.2384 | 0.2384 | 0.2483 |
0.0 | 33.68 | 640 | 4.7753 | 0.5066 | 0.2947 | 0.2119 | 0.2649 | 0.2285 |
0.0 | 34.74 | 660 | 4.9226 | 0.5199 | 0.2682 | 0.2517 | 0.2252 | 0.2550 |
0.0 | 35.79 | 680 | 5.0117 | 0.4967 | 0.3179 | 0.1788 | 0.2980 | 0.2053 |
0.0 | 36.84 | 700 | 5.0534 | 0.5033 | 0.3079 | 0.1954 | 0.2815 | 0.2152 |
0.0 | 37.89 | 720 | 5.0638 | 0.5166 | 0.2682 | 0.2483 | 0.2285 | 0.2550 |
0.0 | 38.95 | 740 | 5.1010 | 0.5132 | 0.2649 | 0.2483 | 0.2285 | 0.2583 |
0.0 | 40.0 | 760 | 5.1367 | 0.5132 | 0.2649 | 0.2483 | 0.2285 | 0.2583 |
0.0001 | 41.05 | 780 | 5.1730 | 0.5166 | 0.2781 | 0.2384 | 0.2384 | 0.2450 |
0.0 | 42.11 | 800 | 5.0295 | 0.5232 | 0.2848 | 0.2384 | 0.2384 | 0.2384 |
0.0 | 43.16 | 820 | 5.0261 | 0.5166 | 0.2781 | 0.2384 | 0.2384 | 0.2450 |
0.0 | 44.21 | 840 | 5.0447 | 0.5166 | 0.2781 | 0.2384 | 0.2384 | 0.2450 |
0.0126 | 45.26 | 860 | 5.0130 | 0.5232 | 0.2980 | 0.2252 | 0.2517 | 0.2252 |
0.0 | 46.32 | 880 | 5.0184 | 0.5066 | 0.3046 | 0.2020 | 0.2748 | 0.2185 |
0.0 | 47.37 | 900 | 5.0276 | 0.5066 | 0.3046 | 0.2020 | 0.2748 | 0.2185 |
0.0 | 48.42 | 920 | 5.0332 | 0.5066 | 0.3046 | 0.2020 | 0.2748 | 0.2185 |
0.0 | 49.47 | 940 | 5.0353 | 0.5066 | 0.3046 | 0.2020 | 0.2748 | 0.2185 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2