PEFT
Safetensors
OriGen / README.md
henryen's picture
Update README.md
f2403c0 verified
|
raw
history blame
3.21 kB
metadata
license: gpl-3.0
base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
library_name: peft

OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection

Introduction

OriGen is a fine-tuned lora model designed for Verilog code generation. It is trained on top of DeepSeek Coder 7B using datasets generated from code-to-code augmentation and self-reflection.

The model has been uploaded to Hugging Face, and the repository contains the inference scripts. The dataset and data generation flow will be released soon.

Evaluation Results

evaluation

Quick Start

Before running the following code, please install the required packages:

conda create -n origen python=3.11
conda activate origen
pip install -r requirements.txt

Here is an example of how to use the model. Please note that the base model, DeepSeek Coder 7B, is loaded in float16 precision, even though its default precision is bfloat16. This choice was made because our experiments showed that Lora trained in float16 outperforms those trained in bfloat16.

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
from peft import PeftModel

model_name = "deepseek-ai/deepseek-coder-7b-instruct-v1.5"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
    device_map="auto",
).to("cuda")

model = PeftModel.from_pretrained(model, model_id="henryen/OriGen")
model.eval()

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "### Instruction: Please act as a professional Verilog designer and provide Verilog code based on the given description. Create a 8 bit full adder with only one assign statement.\n### Response: "

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

outputs = model.generate(
    **inputs, 
    max_new_tokens=1000, 
    do_sample=False, 
    temperature=0, 
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.pad_token_id,
    streamer=streamer
)

The output will be:

module full_adder(
    input [7:0] a,
    input [7:0] b,
    input cin,
    output [7:0] sum,
    output cout
);

assign {cout, sum} = a + b + cin;

endmodule

Verilog-Eval Benchmark

We have released the scripts for the Verilog-Eval benchmark. Please refer to the README for details.

Paper

Arxiv: https://arxiv.org/abs/2407.16237

Please cite our paper if you use this model.

@article{2024origen,
  title={OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection},
  author={Cui, Fan and Yin, Chenyang and Zhou, Kexing and Xiao, Youwei and Sun, Guangyu and Xu, Qiang and Guo, Qipeng and Song, Demin and Lin, Dahua and Zhang, Xingcheng and others},
  journal={arXiv preprint arXiv:2407.16237},
  year={2024}
}