henil panchal
update model card README.md
c8c6130
|
raw
history blame
2.26 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-telugu-asr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-telugu-asr
This model is a fine-tuned version of [henilp105/wav2vec2-large-xls-r-300m-telugu-asr](https://huggingface.co/henilp105/wav2vec2-large-xls-r-300m-telugu-asr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1050
- Wer: 0.6656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.0506 | 2.3 | 200 | 0.8841 | 0.7564 |
| 0.6354 | 4.59 | 400 | 0.7448 | 0.6912 |
| 0.3934 | 6.89 | 600 | 0.8321 | 0.6929 |
| 0.2652 | 9.19 | 800 | 0.9529 | 0.6984 |
| 0.2022 | 11.49 | 1000 | 0.9490 | 0.6979 |
| 0.1514 | 13.79 | 1200 | 1.0025 | 0.6869 |
| 0.124 | 16.09 | 1400 | 1.0367 | 0.6799 |
| 0.1007 | 18.39 | 1600 | 1.0658 | 0.6734 |
| 0.0875 | 20.69 | 1800 | 1.0758 | 0.6779 |
| 0.0838 | 22.98 | 2000 | 1.0999 | 0.6701 |
| 0.0745 | 25.29 | 2200 | 1.1020 | 0.6708 |
| 0.0641 | 27.58 | 2400 | 1.1140 | 0.6683 |
| 0.0607 | 29.88 | 2600 | 1.1050 | 0.6656 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.13.2