helenai commited on
Commit
b14e656
·
1 Parent(s): af6ceb6

commit files to HF hub

Browse files
README.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - openvino
6
+ ---
7
+
8
+ # facebook/hubert-large-ls960-ft
9
+
10
+ This is the [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) model converted to [OpenVINO](https://openvino.ai), for accelerated inference.
11
+
12
+ An example of how to do inference on this model:
13
+ ```python
14
+ from optimum.intel import OVModelForCTC
15
+ from transformers import AutoProcessor, pipeline
16
+
17
+ # model_id should be set to either a local directory or a model available on the HuggingFace hub.
18
+ model_id = "helenai/facebook-hubert-large-ls960-ft-ov"
19
+ feature_extractor = AutoProcessor.from_pretrained(model_id)
20
+ model = OVModelForCTC.from_pretrained(model_id)
21
+ pipe = pipeline("automatic-speech-recognition", model=model, feature_extractor=feature_extractor)
22
+ result = pipe("hello world")
23
+ print(result)
24
+ ```
25
+
config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/hubert-large-ls960-ft",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "HubertForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "classifier_proj_size": 256,
11
+ "conv_bias": true,
12
+ "conv_dim": [
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512
20
+ ],
21
+ "conv_kernel": [
22
+ 10,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2
29
+ ],
30
+ "conv_stride": [
31
+ 5,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2
38
+ ],
39
+ "ctc_loss_reduction": "sum",
40
+ "ctc_zero_infinity": false,
41
+ "diversity_loss_weight": 0.1,
42
+ "do_stable_layer_norm": true,
43
+ "eos_token_id": 2,
44
+ "feat_extract_activation": "gelu",
45
+ "feat_extract_dropout": 0.0,
46
+ "feat_extract_norm": "layer",
47
+ "feat_proj_dropout": 0.1,
48
+ "feat_proj_layer_norm": true,
49
+ "final_dropout": 0.1,
50
+ "gradient_checkpointing": false,
51
+ "hidden_act": "gelu",
52
+ "hidden_dropout": 0.1,
53
+ "hidden_dropout_prob": 0.1,
54
+ "hidden_size": 1024,
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 4096,
57
+ "layer_norm_eps": 1e-05,
58
+ "layerdrop": 0.1,
59
+ "mask_feature_length": 10,
60
+ "mask_feature_min_masks": 0,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_masks": 2,
64
+ "mask_time_prob": 0.05,
65
+ "model_type": "hubert",
66
+ "num_attention_heads": 16,
67
+ "num_conv_pos_embedding_groups": 16,
68
+ "num_conv_pos_embeddings": 128,
69
+ "num_feat_extract_layers": 7,
70
+ "num_hidden_layers": 24,
71
+ "pad_token_id": 0,
72
+ "transformers_version": "4.39.3",
73
+ "use_weighted_layer_sum": false,
74
+ "vocab_size": 32
75
+ }
inference.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from optimum.intel import OVModelForCTC
2
+ from transformers import AutoProcessor, pipeline
3
+
4
+ # model_id should be set to either a local directory or a model available on the HuggingFace hub.
5
+ model_id = "helenai/facebook-hubert-large-ls960-ft-ov"
6
+ feature_extractor = AutoProcessor.from_pretrained(model_id)
7
+ model = OVModelForCTC.from_pretrained(model_id)
8
+ pipe = pipeline("automatic-speech-recognition", model=model, feature_extractor=feature_extractor)
9
+ result = pipe("hello world")
10
+ print(result)
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f387de334e8045ba9803eaa75d29052345e5e2daa29eaf51c816c01ffb04203
3
+ size 630933740
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": true,
22
+ "normalized": false,
23
+ "rstrip": true,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": true,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false,
33
+ "special": false
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "clean_up_tokenization_spaces": true,
38
+ "do_lower_case": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "<pad>",
42
+ "processor_class": "Wav2Vec2Processor",
43
+ "replace_word_delimiter_char": " ",
44
+ "target_lang": null,
45
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
46
+ "unk_token": "<unk>",
47
+ "word_delimiter_token": "|"
48
+ }
vocab.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "'": 27,
3
+ "</s>": 2,
4
+ "<pad>": 0,
5
+ "<s>": 1,
6
+ "<unk>": 3,
7
+ "A": 7,
8
+ "B": 24,
9
+ "C": 19,
10
+ "D": 14,
11
+ "E": 5,
12
+ "F": 20,
13
+ "G": 21,
14
+ "H": 11,
15
+ "I": 10,
16
+ "J": 29,
17
+ "K": 26,
18
+ "L": 15,
19
+ "M": 17,
20
+ "N": 9,
21
+ "O": 8,
22
+ "P": 23,
23
+ "Q": 30,
24
+ "R": 13,
25
+ "S": 12,
26
+ "T": 6,
27
+ "U": 16,
28
+ "V": 25,
29
+ "W": 18,
30
+ "X": 28,
31
+ "Y": 22,
32
+ "Z": 31,
33
+ "|": 4
34
+ }