language: en | |
license: apache-2.0 | |
datasets: | |
- sst2 | |
- glue | |
tags: | |
- openvino | |
## distilbert-base-uncased-finetuned-sst-2-english | |
[distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) quantized with NNCF PTQ and exported to the OpenVINO IR. | |
**Model Description:** l is This model reaches an accuracy of 90.0 on the validation set. See [ov\_config.json](./ov_config.json) for the quantization config. | |
## Usage example | |
You can use this model with Transformers *pipeline*. | |
```python | |
from transformers import AutoTokenizer, pipeline | |
from optimum.intel.openvino import OVModelForSequenceClassification | |
model_id = "helenai/distilbert-base-uncased-finetuned-sst-2-english-ov-int8" | |
model = OVModelForSequenceClassification.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
cls_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
text = "He's a dreadful magician." | |
outputs = cls_pipe(text) | |
print(outputs) | |
``` | |
Example output: | |
```bash | |
[{'label': 'NEGATIVE', 'score': 0.9929909706115723}] | |
``` | |