English
Shanci's picture
Upload folder using huggingface_hub
26225c5 verified
import sys
import hydra
import torch
import numpy as np
import pandas as pd
import os.path as osp
from tqdm import tqdm
from copy import deepcopy
from itertools import product
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.cm as cm
from torch.nn.functional import one_hot
from torch_geometric.nn.pool.consecutive import consecutive_cluster
from src.utils.hydra import init_config
from src.utils.neighbors import knn_2
from src.utils.graph import to_trimmed
from src.utils.cpu import available_cpu_count
from src.utils.scatter import scatter_mean_weighted
from src.utils.semantic import _set_attribute_preserving_transforms
src_folder = osp.dirname(osp.dirname(osp.abspath(__file__)))
sys.path.append(src_folder)
sys.path.append(osp.join(src_folder, "dependencies/grid_graph/python/bin"))
sys.path.append(osp.join(src_folder, "dependencies/parallel_cut_pursuit/python/wrappers"))
from grid_graph import edge_list_to_forward_star
from cp_d0_dist import cp_d0_dist
__all__ = [
'generate_random_bbox_data', 'generate_random_segment_data',
'instance_cut_pursuit', 'oracle_superpoint_clustering', 'get_stuff_mask',
'compute_panoptic_metrics', 'compute_panoptic_metrics_s3dis_6fold',
'grid_search_panoptic_partition']
_MAX_NUM_EDGES = 4294967295
def generate_random_bbox_data(
num_img=1,
num_classes=1,
height=128,
width=128,
h_split=1,
w_split=2,
det_gt_ratio=1):
# Create some images with a ground truth partition
instance_images = -torch.ones(num_img, height, width, dtype=torch.long)
label_images = -torch.ones(num_img, height, width, dtype=torch.long)
h_gt = height // h_split
w_gt = width // w_split
gt_boxes = torch.zeros(num_img * h_split * w_split, 4)
gt_labels = torch.randint(0, num_classes, (num_img * h_split * w_split,))
iterator = product(range(num_img), range(h_split), range(w_split))
for idx, (i_img, i, j) in enumerate(iterator):
h1 = i * h_gt
h2 = (i + 1) * h_gt
w1 = j * w_gt
w2 = (j + 1) * w_gt
instance_images[i_img, h1:h2, w1:w2] = idx
label_images[i_img, h1:h2, w1:w2] = gt_labels[idx]
gt_boxes[idx] = torch.tensor([h1, w1, h2, w2])
# Create some random detection boxes
num_gt = (instance_images.max() + 1).item()
num_det = int(num_gt * det_gt_ratio)
i_center_det = torch.randint(0, height, (num_det,))
j_center_det = torch.randint(0, width, (num_det,))
h_det = torch.randint(int(h_gt * 0.7), int(h_gt * 1.3), (num_det,))
w_det = torch.randint(int(w_gt * 0.7), int(w_gt * 1.3), (num_det,))
det_boxes = torch.vstack([
(i_center_det - h_det / 2).clamp(min=0),
(j_center_det - w_det / 2).clamp(min=0),
(i_center_det + h_det / 2).clamp(max=height),
(j_center_det + w_det / 2).clamp(max=width)]).T.round()
det_img_idx = torch.randint(0, num_img, (num_det,))
det_labels = torch.randint(0, num_classes, (num_det,))
det_scores = torch.rand(num_det)
# Display the images stacked along their height (first dim) and draw
# the box for each detection
fig, ax = plt.subplots()
ax.imshow(instance_images.view(-1, width), cmap='jet')
for idx_det in range(num_det):
i = det_boxes[idx_det, 0] + det_img_idx[idx_det] * height
j = det_boxes[idx_det, 1]
h = det_boxes[idx_det, 2] - det_boxes[idx_det, 0]
w = det_boxes[idx_det, 3] - det_boxes[idx_det, 1]
rect = patches.Rectangle(
(j, i),
w,
h,
linewidth=3,
edgecolor=cm.nipy_spectral(idx_det / num_det),
facecolor='none')
ax.add_patch(rect)
plt.show()
# Display the images stacked along their height (first dim) and draw the
# box for each detection
fig, ax = plt.subplots()
ax.imshow(label_images.view(-1, width).float() / num_classes, cmap='jet')
for idx_det in range(num_det):
i = det_boxes[idx_det, 0] + det_img_idx[idx_det] * height
j = det_boxes[idx_det, 1]
h = det_boxes[idx_det, 2] - det_boxes[idx_det, 0]
w = det_boxes[idx_det, 3] - det_boxes[idx_det, 1]
c = cm.nipy_spectral(det_labels[idx_det].float().item() / num_classes)
rect = patches.Rectangle(
(j, i),
w,
h,
linewidth=3,
edgecolor=c,
facecolor='none')
ax.add_patch(rect)
plt.show()
# Compute the metrics using torchmetrics
iterator = zip(gt_boxes.view(num_img, -1, 4), gt_labels.view(num_img, -1))
targets = [
dict(boxes=boxes, labels=labels)
for boxes, labels in iterator]
preds = [
dict(
boxes=det_boxes[det_img_idx == i_img],
labels=det_labels[det_img_idx == i_img],
scores=det_scores[det_img_idx == i_img])
for i_img in range(num_img)]
# For each predicted pixel, we compute the gt object idx, and the gt
# label, to build an InstanceData.
# NB: we cannot build this by creating a single pred_idx image,
# because predictions may overlap in this toy setup, unlike our 3D
# superpoint partition paradigm...
pred_idx = []
gt_idx = []
gt_y = []
for idx_det in range(num_det):
i_img = det_img_idx[idx_det]
x1, y1, x2, y2 = det_boxes[idx_det].long()
num_points = (x2 - x1) * (y2 - y1)
pred_idx.append(torch.full((num_points,), idx_det))
gt_idx.append(instance_images[i_img, x1:x2, y1:y2].flatten())
gt_y.append(label_images[i_img, x1:x2, y1:y2].flatten())
pred_idx = torch.cat(pred_idx)
gt_idx = torch.cat(gt_idx)
gt_y = torch.cat(gt_y)
count = torch.ones_like(pred_idx)
from src.data.instance import InstanceData
instance_data = InstanceData(pred_idx, gt_idx, count, gt_y, dense=True)
return targets, preds, gt_idx, gt_y, count, instance_data
def generate_single_random_segment_image(
num_gt=10,
num_pred=12,
num_classes=3,
height=32,
width=64,
shift=5,
random_pred_label=False,
show=True,
iterations=20):
"""Generate an image with random ground truth and predicted instance
and semantic segmentation data. To make the images realisitc, and to
ensure that the instances form a PARTITION of the image, we rely on
voronoi cells. Besides, to encourage a realistic overalp between the
predicted and target instances, the predcition cell centers are
sampled near the target samples.
"""
# Generate random pixel positions for the ground truth and the
# prediction centers. To produce predictions with "controllable"
# overlap with the targets, we use the gt's centers as seeds for the
# prediction centers and randomly sample shift them
x = torch.randint(0, height, (num_gt,))
y = torch.randint(0, width, (num_gt,))
gt_xy = torch.vstack((x, y)).T
if num_pred <= num_gt:
idx_ref_gt = torch.from_numpy(
np.random.choice(num_gt, num_pred, replace=False))
else:
idx_ref_gt = torch.from_numpy(
np.random.choice(num_gt, num_pred % num_gt, replace=False))
idx_ref_gt = torch.cat((
torch.arange(num_gt).repeat(num_pred // num_gt), idx_ref_gt))
xy_shift = torch.randint(0, 2 * shift, (num_pred, 2)) - shift
pred_xy = gt_xy[idx_ref_gt] + xy_shift
clamp_min = torch.tensor([0, 0])
clamp_max = torch.tensor([height, width])
pred_xy = pred_xy.clamp(min=clamp_min, max=clamp_max)
# The above prediction center generation process may produce
# duplicates, which can in turn generate downstream errors. To avoid
# this, we greedily search for duplicates and shift them
already_used_xy_ids = []
for i_pred, xy in enumerate(pred_xy):
xy_id = xy[0] * width + xy[1]
count = 0
while xy_id in already_used_xy_ids and count < iterations:
xy_shift = torch.randint(0, 2 * shift, (2,)) - shift
xy = gt_xy[idx_ref_gt[i_pred]] + xy_shift
xy = xy.clamp(min=clamp_min, max=clamp_max)
xy_id = xy[0] * width + xy[1]
count += 1
if count == iterations:
raise ValueError(
f"Reached max iterations={iterations} while resampling "
"duplicate prediction centers")
already_used_xy_ids.append(xy_id)
pred_xy[i_pred] = xy
# Generate labels and scores
gt_labels = torch.randint(0, num_classes, (num_gt,))
if random_pred_label:
pred_labels = torch.randint(0, num_classes, (num_pred,))
else:
pred_labels = gt_labels[idx_ref_gt]
pred_scores = torch.rand(num_pred)
# Generate a 3D point cloud representing the pixel coordinates of the
# image. This will be used to compute the 1-NNs and, from there, a
# partition into voronoi cells
x, y = torch.meshgrid(
torch.arange(height), torch.arange(width), indexing='ij')
x = x.flatten()
y = y.flatten()
z = torch.zeros_like(x)
xyz = torch.vstack((x, y, z)).T
# Compute a gt segmentation image from the 1-NN of each pixel, wrt the
# gt segment centers
gt_xyz = torch.cat((gt_xy, torch.zeros_like(gt_xy[:, [0]])), dim=1).float()
gt_nn = knn_2(gt_xyz, xyz.float(), 1, r_max=max(width, height))[0]
gt_seg_image = gt_nn.view(height, width)
gt_label_image = gt_labels[gt_seg_image]
# Compute a pred segmentation image from the 1-NN of each pixel, wrt the
# pred segment centers
pred_xyz = torch.cat((pred_xy, torch.zeros_like(pred_xy[:, [0]])), dim=1).float()
pred_nn = knn_2(pred_xyz, xyz.float(), 1, r_max=max(width, height))[0]
pred_seg_image = pred_nn.view(height, width)
pred_label_image = pred_labels[pred_seg_image]
# Display the segment images
if show:
plt.subplot(2, 2, 1)
plt.title('Ground truth instances')
plt.imshow(gt_seg_image)
plt.subplot(2, 2, 2)
plt.title('Predicted instances')
plt.imshow(pred_seg_image)
plt.subplot(2, 2, 3)
plt.title('Ground truth labels')
plt.imshow(gt_label_image)
plt.subplot(2, 2, 4)
plt.title('Predicted labels')
plt.imshow(pred_label_image)
plt.show()
# Organize the data into torchmetric-friendly format
tm_targets = dict(
masks=torch.stack([gt_seg_image == i_gt for i_gt in range(num_gt)]),
labels=gt_labels)
tm_preds = dict(
masks=torch.stack([pred_seg_image == i_pred for i_pred in range(num_pred)]),
labels=pred_labels,
scores=pred_scores)
tm_data = (tm_preds, tm_targets)
# Organize the data into our custom format
pred_idx = pred_seg_image.flatten()
gt_idx = gt_seg_image.flatten()
gt_y = gt_label_image.flatten()
count = torch.ones_like(pred_idx)
from src.data.instance import InstanceData
instance_data = InstanceData(pred_idx, gt_idx, count, gt_y, dense=True)
spt_data = (pred_scores, pred_labels, instance_data)
return tm_data, spt_data
def generate_random_segment_data(
num_img=2,
num_gt_per_img=10,
num_pred_per_img=14,
num_classes=2,
height=32,
width=64,
shift=5,
random_pred_label=False,
verbose=True):
"""Generate multiple images with random ground truth and predicted
instance and semantic segmentation data. To make the images
realistic, and to ensure that the instances form a PARTITION of the
image, we rely on voronoi cells. Besides, to encourage a realistic
overlap between the predicted and target instances, the prediction
cell centers are sampled near the target samples.
"""
tm_data = []
spt_data = []
for i_img in range(num_img):
if verbose:
print(f"\nImage {i_img + 1}/{num_img}")
tm_data_, spt_data_ = generate_single_random_segment_image(
num_gt=num_gt_per_img,
num_pred=num_pred_per_img,
num_classes=num_classes,
height=height,
width=width,
shift=shift,
random_pred_label=random_pred_label,
show=verbose)
tm_data.append(tm_data_)
spt_data.append(spt_data_)
return tm_data, spt_data
def _instance_cut_pursuit(
node_x,
node_logits,
node_size,
edge_index,
edge_affinity_logits,
loss_type='l2_kl',
regularization=1e-2,
x_weight=1,
p_weight=1,
cutoff=1,
parallel=True,
iterations=10,
trim=False,
discrepancy_epsilon=1e-4,
temperature=1,
dampening=0,
verbose=False):
"""Partition an instance graph using cut-pursuit.
:param node_x: Tensor of shape [num_nodes, num_dim]
Node features
:param node_logits: Tensor of shape [num_nodes, num_classes]
Predicted classification logits for each node
:param node_size: Tensor of shape [num_nodes]
Size of each node
:param edge_index: Tensor of shape [2, num_edges]
Edges of the graph, in torch-geometric's format
:param edge_affinity_logits: Tensor of shape [num_edges]
Predicted affinity logits (ie in R+, before sigmoid) of each
edge
:param loss_type: str
Rules the loss applied on the node features. Accepts one of
'l2' (L2 loss on node features and probabilities),
'l2_kl' (L2 loss on node features and Kullback-Leibler
divergence on node probabilities)
:param regularization: float
Regularization parameter for the partition
:param x_weight: float
Weight used to mitigate the impact of the node position in the
partition. The larger, the lesser features importance before
the probabilities
:param p_weight: float
Weight used to mitigate the impact of the node probabilities in
the partition. The larger, the lesser features importance before
the features
:param cutoff: float
Minimum number of points in each cluster
:param parallel: bool
Whether cut-pursuit should run in parallel
:param iterations: int
Maximum number of iterations for each partition
:param trim: bool
Whether the input graph should be trimmed. See `to_trimmed()`
documentation for more details on this operation
:param discrepancy_epsilon: float
Mitigates the maximum discrepancy. More precisely:
`affinity=1 ⇒ discrepancy=1/discrepancy_epsilon`
:param temperature: float
Temperature used in the softmax when converting node logits to
probabilities
:param dampening: float
Dampening applied to the node probabilities to mitigate the
impact of near-zero probabilities in the Kullback-Leibler
divergence
:param verbose: bool
:return:
"""
# Sanity checks
assert node_x.dim() == 2, \
"`node_x` must have shape `[num_nodes, num_dim]`"
assert node_logits.dim() == 2, \
"`node_logits` must have shape `[num_nodes, num_classes]`"
assert node_logits.shape[0] == node_x.shape[0], \
"`node_logits` and `node_x` must have the same number of points"
assert node_size.dim() == 1, \
"`node_size` must have shape `[num_nodes]`"
assert node_size.shape[0] == node_x.shape[0], \
"`node_size` and `node_x` must have the same number of points"
assert edge_index.dim() == 2 and edge_index.shape[0] == 2, \
"`edge_index` must be of shape `[2, num_edges]`"
edge_affinity_logits = edge_affinity_logits.squeeze()
assert edge_affinity_logits.dim() == 1, \
"`edge_affinity_logits` must be of shape `[num_edges]`"
assert edge_affinity_logits.shape[0] == edge_index.shape[1], \
"`edge_affinity_logits` and `edge_index` must have the same number " \
"of edges"
loss_type = loss_type.lower()
assert loss_type in ['l2', 'l2_kl'], \
"`loss_type` must be one of ['l2', 'l2_kl']"
assert 0 < discrepancy_epsilon, \
"`discrepancy_epsilon` must be strictly positive"
assert 0 < temperature, "`temperature` must be strictly positive"
assert 0 <= dampening <= 1, "`dampening` must be in [0, 1]"
device = node_x.device
num_nodes = node_x.shape[0]
x_dim = node_x.shape[1]
p_dim = node_logits.shape[1]
dim = x_dim + p_dim
num_edges = edge_affinity_logits.numel()
assert num_nodes < np.iinfo(np.uint32).max, \
"Too many nodes for `uint32` indices"
assert num_edges < np.iinfo(np.uint32).max, \
"Too many edges for `uint32` indices"
# Initialize the number of threads used for parallel cut-pursuit
num_threads = available_cpu_count() if parallel else 1
# Exit if the graph contains only one node
if num_nodes < 2:
return torch.zeros(num_nodes, dtype=torch.long, device=device)
# Trim the graph, if need be
if trim:
edge_index, edge_affinity_logits = to_trimmed(
edge_index, edge_attr=edge_affinity_logits, reduce='mean')
if verbose:
print(
f'Launching instance partition reg={regularization}, '
f'cutoff={cutoff}')
# User warning if the number of edges exceeds uint32 limits
if num_edges > _MAX_NUM_EDGES and verbose:
print(
f"WARNING: number of edges {num_edges} exceeds the uint32 limit "
f"{_MAX_NUM_EDGES}. Please update the cut-pursuit source code to "
f"accept a larger data type for `index_t`.")
# Convert affinity logits to discrepancies
edge_affinity = edge_affinity_logits.sigmoid()
edge_discrepancy = edge_affinity / (1 - edge_affinity + discrepancy_epsilon)
# Convert edges to forward-star (or CSR) representation
source_csr, target, reindex = edge_list_to_forward_star(
num_nodes, edge_index.T.contiguous().cpu().numpy())
source_csr = source_csr.astype('uint32')
target = target.astype('uint32')
edge_weights = edge_discrepancy.cpu().numpy()[reindex] * regularization \
if edge_discrepancy is not None else regularization
# Convert logits to class probabilities
node_probas = torch.nn.functional.softmax(node_logits / temperature, dim=1)
# Apply some dampening to the probability distributions. This brings
# the distributions closer to a uniform distribution, limiting the
# impact of near-zero probabilities in the Kullback-Leibler
# divergence in the partition
num_classes = node_probas.shape[1]
node_probas = (1 - dampening) * node_probas + dampening / num_classes
# Mean-center the node features, in case values have a very large
# mean. This is optional, but favors maintaining values in a
# reasonable float32 range
node_x = node_x - node_x.mean(dim=0).view(1, -1)
# Build the node features as the concatenation of positions and
# class probabilities
x = torch.cat((node_x, node_probas), dim=1)
x = np.asfortranarray(x.cpu().numpy().T)
node_size = node_size.float().cpu().numpy()
# The `loss` term will decide which portion of `x` should be treated
# with L2 loss and which should be treated with Kullback-Leibler
# divergence
l2_dim = dim if loss_type == 'l2' else x_dim
# Weighting to apply on the features and probabilities
coor_weights_dim = dim if loss_type == 'l2' else x_dim + 1
coor_weights = np.ones(coor_weights_dim, dtype=np.float32)
coor_weights[:x_dim] *= x_weight
coor_weights[x_dim:] *= p_weight
# Partition computation
obj_index, x_c, cluster, edges, times = cp_d0_dist(
l2_dim,
x,
source_csr,
target,
edge_weights=edge_weights,
vert_weights=node_size,
coor_weights=coor_weights,
min_comp_weight=cutoff,
cp_dif_tol=1e-2,
K=4,
cp_it_max=iterations,
split_damp_ratio=0.7,
verbose=verbose,
max_num_threads=num_threads,
balance_parallel_split=True,
compute_Time=True,
compute_List=True,
compute_Graph=True)
if verbose:
delta_t = (times[1:] - times[:-1]).round(2)
print(f'Instance partition times: {delta_t}')
# Convert the obj_index to the input format
obj_index = torch.from_numpy(obj_index.astype('int64')).to(device)
return obj_index
def instance_cut_pursuit(
batch,
node_x,
node_logits,
stuff_classes,
node_size,
edge_index,
edge_affinity_logits,
loss_type='l2_kl',
regularization=1e-2,
x_weight=1,
p_weight=1,
cutoff=1,
parallel=True,
iterations=10,
trim=False,
discrepancy_epsilon=1e-4,
temperature=1,
dampening=0,
verbose=False):
"""The forward step will compute the partition on the instance
graph, based on the node features, node logits, and edge
affinities. The partition segments will then be further merged
so that there is at most one instance of each stuff class per
batch item (ie per scene).
:param batch: Tensor of shape [num_nodes]
Batch index of each node
:param node_x: Tensor of shape [num_nodes, num_dim]
Predicted node embeddings
:param node_logits: Tensor of shape [num_nodes, num_classes]
Predicted classification logits for each node
:param stuff_classes: List or Tensor
List of 'stuff' class labels. These are used for merging
stuff segments together to ensure there is at most one
predicted instance of each 'stuff' class per batch item
:param node_size: Tensor of shape [num_nodes]
Size of each node
:param edge_index: Tensor of shape [2, num_edges]
Edges of the graph, in torch-geometric's format
:param edge_affinity_logits: Tensor of shape [num_edges]
Predicted affinity logits (ie in R+, before sigmoid) of each
edge
:param loss_type: str
Rules the loss applied on the node features. Accepts one of
'l2' (L2 loss on node features and probabilities),
'l2_kl' (L2 loss on node features and Kullback-Leibler
divergence on node probabilities)
:param regularization: float
Regularization parameter for the partition
:param x_weight: float
Weight used to mitigate the impact of the node position in the
partition. The larger, the lesser features importance before
the probabilities
:param p_weight: float
Weight used to mitigate the impact of the node probabilities in
the partition. The larger, the lesser features importance before
the features
:param cutoff: float
Minimum number of points in each cluster
:param parallel: bool
Whether cut-pursuit should run in parallel
:param iterations: int
Maximum number of iterations for each partition
:param trim: bool
Whether the input graph should be trimmed. See `to_trimmed()`
documentation for more details on this operation
:param discrepancy_epsilon: float
Mitigates the maximum discrepancy. More precisely:
`affinity=1 ⇒ discrepancy=1/discrepancy_epsilon`
:param temperature: float
Temperature used in the softmax when converting node logits to
probabilities
:param dampening: float
Dampening applied to the node probabilities to mitigate the
impact of near-zero probabilities in the Kullback-Leibler
divergence
:param verbose: bool
:return: obj_index: Tensor of shape [num_nodes]
Indicates which predicted instance each node belongs to
"""
# Actual partition, returns a tensor indicating which predicted
# object each node belongs to
obj_index = _instance_cut_pursuit(
node_x,
node_logits,
node_size,
edge_index,
edge_affinity_logits,
loss_type=loss_type,
regularization=regularization,
x_weight=x_weight,
p_weight=p_weight,
cutoff=cutoff,
parallel=parallel,
iterations=iterations,
trim=trim,
discrepancy_epsilon=discrepancy_epsilon,
temperature=temperature,
dampening=dampening,
verbose=verbose)
# Compute the mean logits for each predicted object, weighted by
# the node sizes
obj_logits = scatter_mean_weighted(node_logits, obj_index, node_size)
obj_y = obj_logits.argmax(dim=1)
# Identify, out of the predicted objects, which are of type stuff.
# These will need to be merged to ensure there as most one instance
# of each stuff class in each scene
obj_is_stuff = get_stuff_mask(obj_y, stuff_classes)
# Distribute the object-wise labels to the nodes
node_obj_y = obj_y[obj_index]
node_is_stuff = obj_is_stuff[obj_index]
# Since we only want at most one prediction of each stuff class
# per batch item (ie per scene), we assign nodes predicted as a
# stuff class to new indices. These new indices are built in
# such a way that there can be only one instance of each stuff
# class per batch item
batch = batch if batch is not None else torch.zeros_like(obj_index)
num_batch_items = batch.max() + 1
final_obj_index = obj_index.clone()
final_obj_index[node_is_stuff] = \
obj_index.max() + 1 \
+ node_obj_y[node_is_stuff] * num_batch_items \
+ batch[node_is_stuff]
final_obj_index, perm = consecutive_cluster(final_obj_index)
return final_obj_index
def oracle_superpoint_clustering(
nag,
num_classes,
stuff_classes,
mode='pas',
graph_kwargs=None,
partition_kwargs=None):
"""Compute an oracle for superpoint clustering for instance and
panoptic segmentation. This is a proxy for the highest achievable
graph clustering performance with the superpoint partition at hand
and the input clustering parameters.
The output `InstanceData` can then be used to compute final
segmentation metrics using:
- `InstanceData.semantic_segmentation_oracle()`
- `InstanceData.instance_segmentation_oracle()`
- `InstanceData.panoptic_segmentation_oracle()`
More precisely, for the optimal superpoint clustering:
- build the instance graph on the input `NAG` `level`-partition
- for each edge, the oracle perfectly predicts the affinity
- for each node, the oracle perfectly predicts the offset
- for each node, the oracle predicts the dominant label from its
label histogram (excluding the 'void' label)
- partition the instance graph using the oracle edge affinities,
node offsets and node classes
- merge superpoints if they are assigned to the same object
- merge 'stuff' predictions together, so that there is at most 1
prediction of each 'stuff' class per batch item
:param nag: NAG object
:param num_classes: int
Number of classes in the dataset, allows differentiating between
valid and void classes
:param stuff_classes: List[int]
List of labels for 'stuff' classes
:param mode: str
String characterizing whether edge affinities, node semantics,
positions and offsets should be used in the graph clustering.
'p': use node position.
'o': use oracle offset.
'a': use oracle edge affinities.
's': use oracle node semantics.
In contrast, not setting 'p', nor 'o' is equivalent to setting
all nodes positions and offsets to 0.
Similarly, not setting 'a' will set the same weight to all the
edges.
Finally, not setting 's' will set the same class to all the
nodes.
:param graph_kwargs: dict
Dictionary of kwargs to be passed to the graph constructor
`OnTheFlyInstanceGraph()`
:param partition_kwargs: dict
Dictionary of kwargs to be passed to the partition function
`instance_cut_pursuit()`
:return:
"""
# TODO: maybe remove this function, redundant with grid_search_panoptic_partition
# Local import to avoid import loop errors
from src.transforms import OnTheFlyInstanceGraph
from src.models.panoptic import PanopticSegmentationOutput
from src.metrics import PanopticQuality3D
# Instance graph computation
graph_kwargs = {} if graph_kwargs is None else graph_kwargs
graph_kwargs = dict(graph_kwargs, **dict(level=1, num_classes=num_classes))
nag = OnTheFlyInstanceGraph(**graph_kwargs)(nag)
# Get node target semantics, size and instance graph
node_y = nag[1].y[:, :num_classes].argmax(dim=1)
node_size = nag.get_sub_size(1)
edge_index = nag[1].obj_edge_index
# Prepare input for instance graph partition. If 's' is used, the
# oracle will assign the target semantic label to each node
# NB: we assign only to valid classes and ignore void
# NB2: `instance_cut_pursuit()` expects logits, which it converts to
# probabilities using a softmax, hence the `one_hot * 100`
node_logits = one_hot(node_y, num_classes=num_classes).float() * 100
# Otherwise, the nodes will all have the same logits and the
# semantics will not influence the partition
if 's' not in mode.lower():
partition_kwargs['p_weight'] = 0
# Prepare edge affinity logits. If affinities are not used, we set
# all edge affinity logits to 0 (ie 0.5 sigmoid-ed weights)
edge_affinity_logits = torch.special.logit(nag[1].obj_edge_affinity) \
if 'a' in mode.lower() \
else torch.zeros(edge_index.shape[1], device=nag.device)
# Prepare node position features. If 'o' is used, the oracle
# perfectly predicts the offset to the object center for each node,
# except for stuff and void classes, whose offset is set to 0
if 'o' in mode.lower():
node_x = nag[1].obj_pos
is_stuff = get_stuff_mask(node_y, stuff_classes)
node_x[is_stuff] = nag[1].pos[is_stuff]
# If 'p' only node positions are used
elif 'p' in mode.lower():
node_x = nag[1].pos
# Otherwise, positions and offsets are not used in the partition
else:
partition_kwargs['x_weight'] = 0
node_x = nag[1].pos * 0
# For each node, recover the index of the batch item it belongs to
batch = nag[1].batch if nag[1].batch is not None \
else torch.zeros(nag[1].num_nodes, dtype=torch.long, device=nag.device)
# Instance graph partition
partition_kwargs = {} if partition_kwargs is None else partition_kwargs
obj_index = instance_cut_pursuit(
batch,
node_x,
node_logits,
stuff_classes,
node_size,
edge_index,
edge_affinity_logits,
**partition_kwargs)
# Gather results in an output object
output = PanopticSegmentationOutput(
node_logits,
stuff_classes,
edge_affinity_logits,
# node_offset_pred,
node_size)
# Store the panoptic segmentation results in the output object
output.obj_edge_index = getattr(nag[1], 'obj_edge_index', None)
output.obj_edge_affinity = getattr(nag[1], 'obj_edge_affinity', None)
output.pos = nag[1].pos
output.obj_pos = getattr(nag[1], 'obj_pos', None)
output.obj = nag[1].obj
output.y_hist = nag[1].y
output.obj_index_pred = obj_index
# Create the metrics tracking objects
panoptic_metrics = PanopticQuality3D(
num_classes,
ignore_unseen_classes=True,
stuff_classes=stuff_classes,
compute_on_cpu=True)
# Recover the predicted instance score, semantic label and instance
# partition
obj_score, obj_y, instance_data = output.panoptic_pred()
# Compute the metrics on the oracle partition
panoptic_metrics.update(obj_y, instance_data.cpu())
results = panoptic_metrics.compute()
return results
def get_stuff_mask(y, stuff_classes):
"""Helper function producing a boolean mask of size `y.shape[0]`
indicating which of the `y` (labels if 1D or logits/probabilities if
2D) are among the `stuff_classes`.
"""
# Get labels from y, in case y are logits
labels = y.long() if y.dim() == 1 else y.argmax(dim=1)
# Search the labels belonging to the set of stuff classes
stuff_classes = torch.as_tensor(
stuff_classes, dtype=labels.dtype, device=labels.device)
return torch.isin(labels, stuff_classes)
def compute_panoptic_metrics(
model,
datamodule,
stage='val',
graph_kwargs=None,
partition_kwargs=None,
verbose=True):
"""Helper function to compute the semantic, instance, panoptic
segmentation metrics of a model on a given dataset, for given
instance graph and partition parameters.
"""
# Local imports to avoid import loop errors
from src.data import NAGBatch
# Pick among train, val, and test datasets. It is important to note that
# the train dataset produces augmented spherical samples of large
# scenes, while the val and test dataset
if stage == 'train':
dataset = datamodule.train_dataset
dataloader = datamodule.train_dataloader()
elif stage == 'val':
dataset = datamodule.val_dataset
dataloader = datamodule.val_dataloader()
elif stage == 'test':
dataset = datamodule.test_dataset
dataloader = datamodule.test_dataloader()
else:
raise ValueError(f"Unknown stage : {stage}")
# Prevent `NAGAddKeysTo` from removing attributes to allow
# visualizing them after model inference
dataset = _set_attribute_preserving_transforms(dataset)
# Set the instance graph construction parameters
dataset = _set_graph_construction_parameters(dataset, graph_kwargs)
# Set the partitioner parameters
model, backup_kwargs = _set_partitioner_parameters(model, partition_kwargs)
# Load a dataset item. This will return the hierarchical partition
# of an entire tile, within a NAG object
with torch.no_grad():
enum = tqdm(dataloader) if verbose else dataloader
for nag_list in enum:
nag = NAGBatch.from_nag_list([nag.cuda() for nag in nag_list])
# Apply on-device transforms on the NAG object. For the
# train dataset, this will select a spherical sample of the
# larger tile and apply some data augmentations. For the
# validation and test datasets, this will prepare an entire
# tile for inference
nag = dataset.on_device_transform(nag)
# NB: we use the "validation_step" protocol here, regardless
# of the stage the data comes from
model.validation_step(nag, None)
# Actions taken from on_validation_epoch_end()
# panoptic_results = model.val_panoptic.compute()
# instance_miou = model.val_semantic.miou()
# instance_oa = model.val_semantic.oa()
# instance_macc = model.val_semantic.macc()
panoptic = deepcopy(model.val_panoptic)
instance = deepcopy(model.val_instance)
semantic = deepcopy(model.val_semantic)
model.val_affinity_oa.reset()
model.val_affinity_f1.reset()
model.val_panoptic.reset()
model.val_semantic.reset()
model.val_instance.reset()
# Restore the partitioner initial kwargs
model, _ = _set_partitioner_parameters(model, backup_kwargs)
if not verbose:
return panoptic, instance, semantic
for k, v in panoptic.compute().items():
print(f"{k:<22}: {v}")
if not model.no_instance_metrics:
for k, v in instance.compute().items():
print(f"{k:<22}: {v}")
print(f"mIoU : {semantic.miou().cpu().item()}")
return panoptic, instance, semantic
def compute_panoptic_metrics_s3dis_6fold(
fold_ckpt,
experiment_config,
stage='val',
graph_kwargs=None,
partition_kwargs=None,
verbose=False):
"""Helper function to compute the semantic, instance, panoptic
segmentation metrics of a model on a S3DIS 6-fold, for given
instance graph and partition parameters.
:param fold_ckpt: dict
Dictionary with S3DIS fold numbers as keys and checkpoint paths
as values
:param experiment_config: str
Experiment config to use for inference. For instance for S3DIS
with stuff panoptic segmentation: 'panoptic/s3dis_with_stuff'
:param stage: str
:param graph_kwargs: dict
:param partition_kwargs: dict
:param verbose: bool
:return:
"""
# Local import to avoid import loop errors
from src.metrics import PanopticQuality3D, MeanAveragePrecision3D, \
ConfusionMatrix
# Very ugly fix to ignore lightning's warning messages about the
# trainer and modules not being connected
import warnings
warnings.filterwarnings("ignore")
panoptic_list = []
instance_list = []
semantic_list = []
no_instance_metrics = None
min_instance_size = None
num_classes = None
stuff_classes = None
for fold, ckpt_path in fold_ckpt.items():
if verbose:
print(f"\nFold {fold}")
# Parse the configs using hydra
cfg = init_config(overrides=[
f"experiment={experiment_config}",
f"datamodule.fold={fold}",
f"ckpt_path={ckpt_path}"])
# Instantiate the datamodule
datamodule = hydra.utils.instantiate(cfg.datamodule)
datamodule.prepare_data()
datamodule.setup()
# Instantiate the model
model = hydra.utils.instantiate(cfg.model)
# Load pretrained weights from a checkpoint file
model = model._load_from_checkpoint(cfg.ckpt_path)
model = model.eval().cuda()
# Compute metrics on the fold
panoptic, instance, semantic = compute_panoptic_metrics(
model,
datamodule,
stage=stage,
graph_kwargs=graph_kwargs,
partition_kwargs=partition_kwargs,
verbose=verbose)
# Gather some details from the model and datamodule before
# deleting them
no_instance_metrics = model.no_instance_metrics
min_instance_size = model.hparams.min_instance_size
num_classes = datamodule.train_dataset.num_classes
stuff_classes = datamodule.train_dataset.stuff_classes
del model, datamodule
# Store the metrics for each fold
panoptic_list.append(panoptic)
instance_list.append(instance)
semantic_list.append(semantic)
# Initialize the 6-fold metrics
panoptic_6fold = PanopticQuality3D(
num_classes,
ignore_unseen_classes=True,
stuff_classes=stuff_classes,
compute_on_cpu=True)
instance_6fold = MeanAveragePrecision3D(
num_classes,
stuff_classes=stuff_classes,
min_size=min_instance_size,
compute_on_cpu=True,
remove_void=True)
semantic_6fold = ConfusionMatrix(num_classes)
# Group together per-fold panoptic and semantic results
for i in range(len(panoptic_list)):
panoptic_6fold.instance_data += panoptic_list[i].instance_data
panoptic_6fold.prediction_semantic += panoptic_list[i].prediction_semantic
if not no_instance_metrics:
instance_6fold.prediction_score += instance_list[i].prediction_score
instance_6fold.prediction_semantic += instance_list[i].prediction_semantic
instance_6fold.instance_data += instance_list[i].instance_data
semantic_6fold.confmat += semantic_list[i].confmat.cpu()
# Print computed the metrics
print(f"\n6-fold")
for k, v in panoptic_6fold.compute().items():
print(f"{k:<22}: {v}")
if not no_instance_metrics:
for k, v in instance_6fold.compute().items():
print(f"{k:<22}: {v}")
print(f"mIoU : {semantic_6fold.miou().cpu().item()}")
return (panoptic_6fold, panoptic_list), (instance_6fold, instance_list), (semantic_6fold, semantic_list)
def _set_graph_construction_parameters(dataset, graph_kwargs):
"""Searches for the last occurrence of `OnTheFlyInstanceGraph` among
the `on_device_transform` of the dataset and modifies the graph
construction parameters passed in the `graph_kwargs` dictionary.
"""
if graph_kwargs is None:
return dataset
# Local imports to avoid import loop errors
from src.transforms import OnTheFlyInstanceGraph
# Search for the `OnTheFlyInstanceGraph` instance graph construction
# transform among the on-device transforms
i_transform = None
for i, transform in enumerate(dataset.on_device_transform.transforms):
if isinstance(transform, OnTheFlyInstanceGraph):
i_transform = i
# Set OnTheFlyInstanceGraph parameters if need be
if i_transform is not None and graph_kwargs is not None:
for k, v in graph_kwargs.items():
setattr(dataset.on_device_transform.transforms[i_transform], k, v)
return dataset
def _set_partitioner_parameters(model, partition_kwargs):
"""Modifies the `model.partitioner` parameters with parameters
passed in the `partition_kwargs` dictionary.
"""
backup_kwargs = {}
if partition_kwargs is None:
return model, backup_kwargs
# Set partitioner parameters if need be
if partition_kwargs is not None:
for k, v in partition_kwargs.items():
backup_kwargs[k] = getattr(model.partitioner, k, None)
setattr(model.partitioner, k, v)
return model, backup_kwargs
def _forward_multi_partition(
model,
nag,
partition_kwargs,
mode='pas'):
"""Local helper to compute multiple instance partitions from the
same input data, based on diverse partition parameter settings.
"""
# Local import to avoid import loop errors
from src.models.panoptic import PanopticSegmentationOutput
# Make sure each element of `partition_kwargs` is a list,
# to facilitate computing Cartesian product of the lists for
# grid search
partition_kwargs = {
k: v if isinstance(v, list) else [v]
for k, v in partition_kwargs.items()}
with torch.no_grad():
# Extract features
x = model.net(nag)
# Compute level-1 or multi-level semantic predictions
semantic_pred = [head(x_) for head, x_ in zip(model.head, x)] \
if model.multi_stage_loss else model.head(x)
# Recover level-1 features only
x = x[0] if model.multi_stage_loss else x
# TODO: offset soft-assigned to 0 based on the predicted
# stuff/thing probas. A stuff/thing classification loss could
# provide additional supervision
# Compute edge affinity predictions
# NB: we make edge features symmetric, since we want to compute
# edge affinity, which is not directed
x_edge = x[nag[1].obj_edge_index]
x_edge = torch.cat(
((x_edge[0] - x_edge[1]).abs(), (x_edge[0] + x_edge[1]) / 2), dim=1)
edge_affinity_logits = model.edge_affinity_head(x_edge).squeeze()
# Ignore predicted affinities (sets all edge affinity logits to
# 0, which will set edge weights to 0.5 for the partition)
if 'a' not in mode.lower():
edge_affinity_logits = edge_affinity_logits * 0
# Oracle edge affinities
elif 'A' in mode:
edge_affinity_logits = torch.special.logit(nag[1].obj_edge_affinity)
# Ignore predicted semantic labels
if 's' not in mode.lower():
partition_kwargs['p_weight'] = [0]
# Oracle node semantics predicts perfect semantic logits for
# each node
# NB: we assign only to valid classes and ignore void
# NB2: `instance_cut_pursuit()` expects logits, which it
# converts to probabilities using a softmax, hence the
# `one_hot * 10`
elif 'S' in mode:
node_y = nag[1].y[:, :model.num_classes].argmax(dim=1)
node_logits = one_hot(
node_y, num_classes=model.num_classes).float() * 10
if model.multi_stage_loss:
semantic_pred[0] = node_logits
else:
semantic_pred = node_logits
# Ignore positions and predicted offsets
if 'p' not in mode.lower() and 'o' not in mode.lower():
partition_kwargs['x_weight'] = [0]
# Compute node offset predictions
elif 'o' in mode:
node_offset_pred = model.node_offset_head(x)
# Forcefully set 0-offset for nodes with stuff predictions
node_logits = semantic_pred[0] if model.multi_stage_loss \
else semantic_pred
is_stuff = get_stuff_mask(node_logits, model.stuff_classes)
node_offset_pred[is_stuff] = 0
# Oracle node offsets sets perfect offsets for all nodes and
# keeps node centroid for nodes with target stuff label
# (ie 0-offset)
elif 'O' in mode:
is_stuff = get_stuff_mask(nag[1].y, model.stuff_classes)
nag[1].pos[~is_stuff] = nag[1].obj_pos[~is_stuff]
# Compute the partition on the Cartesian product of parameters
partition_keys = list(partition_kwargs.keys())
enum = [
{k: v for k, v in zip(partition_keys, values)}
for values in product(*partition_kwargs.values())]
partitions = {}
for kwargs in tqdm(enum):
# Apply the kwargs to the partitioner
model, backup_kwargs = _set_partitioner_parameters(model, kwargs)
# Gather results in an output object
output = PanopticSegmentationOutput(
semantic_pred,
model.stuff_classes,
edge_affinity_logits,
# node_offset_pred,
nag.get_sub_size(1))
# Compute the panoptic partition
output = model._forward_partition(nag, output)
# Store the predicted partition wrt the parameter values
# (can't directly store kwargs dict because unhashable)
partitions[tuple(kwargs.values())] = output.obj_index_pred
# Restore the initial partitioner kwargs
model, _ = _set_partitioner_parameters(model, backup_kwargs)
output = model.get_target(nag, output)
return output, partitions, partition_keys
def grid_search_panoptic_partition(
model,
dataset,
i_cloud=0,
graph_kwargs=None,
partition_kwargs=None,
mode='pas',
panoptic=True,
instance=False):
"""Runs a grid search on the partition parameters to find the best
setup on a given sample `dataset[i_cloud]`.
:param model: PanopticSegmentationModule
:param dataset: BaseDataset
:param i_cloud: int
The grid search will be computed on `dataset[i_cloud]`
:param graph_kwargs: dict
Dictionary of parameters to be passed to the instance graph
constructor `OnTheFlyInstanceGraph`. NB: the grid search does
not cover these parameters---only a single value can be passed
for each of these parameters
:param partition_kwargs: dict
Dictionary of parameters to be passed to `model.partitioner`.
Passing a list of values for a given parameter will trigger the
grid search across these values. Beware of the combinatorial
explosion !
:param mode: str
String characterizing whether edge affinities, node semantics,
positions and offsets should be used in the graph clustering.
'p': use node position.
'o': use predicted node offset.
'O': use oracle offset.
'a': use predicted edge affinity.
'A': use oracle edge affinities.
's': use predicted node semantics.
'S': use oracle node semantics.
In contrast, not setting 'p', 'o', nor 'O' is equivalent to
setting all node positions and offsets to 0.
Similarly, not setting 'a' nor 'A' will set the same weight to
all the edges.
Finally, not setting 's', nor 'S' will set the same class to all
the nodes.
:param panoptic: bool
Whether panoptic segmentation metrics should be computed
:param instance: bool
Whether instance segmentation metrics should be computed
:return:
"""
# TODO: grid search on the whole dataset rather than a single cloud
# Local import to avoid import loop errors
from src.metrics import PanopticQuality3D, MeanAveragePrecision3D
assert panoptic or instance, \
"At least 'panoptic' or 'instance' must be True"
# Limit the column header size for printed tables
max_len = 6
# Prevent `NAGAddKeysTo` from removing attributes to allow
# visualizing them after model inference
dataset = _set_attribute_preserving_transforms(dataset)
# Set the instance graph construction parameters
dataset = _set_graph_construction_parameters(dataset, graph_kwargs)
# Load a dataset item. This will return the hierarchical partition
# of an entire tile, within a NAG object
nag = dataset[i_cloud]
# Apply on-device transforms on the NAG object. For the train
# dataset, this will select a spherical sample of the larger tile
# and apply some data augmentations. For the validation and test
# datasets, this will prepare an entire tile for inference
nag = dataset.on_device_transform(nag.cuda())
# Compute the partition for each parameterization
output, partitions, partition_keys = _forward_multi_partition(
model,
nag,
partition_kwargs,
mode=mode)
# Get the target labels
output = model.get_target(nag, output)
# Create the metrics tracking objects
instance_metrics = MeanAveragePrecision3D(
model.num_classes,
stuff_classes=model.stuff_classes,
min_size=model.hparams.min_instance_size,
compute_on_cpu=True,
remove_void=True)
panoptic_metrics = PanopticQuality3D(
model.num_classes,
ignore_unseen_classes=True,
stuff_classes=model.stuff_classes,
compute_on_cpu=True)
# Compute and print metric results for each partition setup
results = {}
results_data = []
best_pq = -1
best_map = -1
best_pq_params = None
best_map_params = None
for (kwargs_values), obj_index_pred in partitions.items():
# Reconstruct the kwargs dict from the kwargs values
kwargs = {k: v for k, v in zip(partition_keys, kwargs_values)}
output.obj_index_pred = obj_index_pred
obj_score, obj_y, instance_data = output.panoptic_pred()
obj_score = obj_score.detach().cpu()
obj_y = obj_y.detach().cpu()
if panoptic:
panoptic_metrics.update(obj_y, instance_data.cpu())
panoptic_results = panoptic_metrics.compute()
panoptic_metrics.reset()
if panoptic_results.pq > best_pq:
best_pq_params = tuple(kwargs.values())
best_pq = panoptic_results.pq
else:
panoptic_results = None
if instance:
instance_metrics.update(obj_score, obj_y, instance_data.cpu())
instance_results = instance_metrics.compute()
instance_metrics.reset()
if instance_results.map > best_map:
best_map_params = tuple(kwargs.values())
best_map = instance_results.map
else:
instance_results = None
# Store the panoptic and instance metric results for the
# parameters at hand
results[tuple(kwargs.values())] = (panoptic_results, instance_results)
# Track the results to build a global summary DataFrame
current_results = [*kwargs.values()]
if panoptic:
current_results += [
round(panoptic_results.pq.item() * 100, 2),
round(panoptic_results.sq.item() * 100, 2),
round(panoptic_results.rq.item() * 100, 2)]
if instance:
current_results += [
round(instance_results.map.item() * 100, 2),
round(instance_results.map_50.item() * 100, 2)]
results_data.append(current_results)
# Print a DataFrame summarizing the results
metric_columns = []
if panoptic:
metric_columns += ['PQ', 'SQ', 'RQ']
if instance:
metric_columns += ['mAP', 'mAP 50']
with pd.option_context('display.precision', 2):
print(pd.DataFrame(
data=results_data,
columns=[
*[
x[:max_len - 1] + '.' if len(x) > max_len else x
for x in partition_keys
],
*metric_columns]))
print()
# Print more details about the best panoptic setup
if panoptic and best_pq_params is not None:
# Print global results
print(f"\nBest panoptic setup: PQ={100 * best_pq:0.2f}")
with pd.option_context('display.precision', 2):
print(pd.DataFrame(
data=[best_pq_params],
columns=[
x[:max_len - 1] + '.' if len(x) > max_len else x
for x in partition_keys]))
print()
# Print per-class results
res = results[best_pq_params][0]
with pd.option_context('display.precision', 2):
print(pd.DataFrame(
data=torch.column_stack([
res.pq_per_class.mul(100),
res.sq_per_class.mul(100),
res.rq_per_class.mul(100),
res.precision_per_class.mul(100),
res.recall_per_class.mul(100),
res.tp_per_class,
res.fp_per_class,
res.fn_per_class]),
index=dataset.class_names[:-1],
columns=['PQ', 'SQ', 'RQ', 'PREC.', 'REC.', 'TP', 'FP', 'FN']))
print()
# Store the best panoptic partition indexing in the output
output.obj_index_pred = partitions[best_pq_params]
# Print more details about the best instance setup
if instance and best_map_params is not None:
# Print global results
print(f"\nBest instance setup: mAP={100 * best_map:0.2f}")
with pd.option_context('display.precision', 2):
print(pd.DataFrame(
data=[best_map_params],
columns=[
x[:max_len - 1] + '.' if len(x) > max_len else x
for x in partition_keys]))
print()
# Print per-class results
res = results[best_map_params][1]
thing_class_names = [
c for i, c in enumerate(dataset.class_names) if i in dataset.thing_classes]
with pd.option_context('display.precision', 2):
print(pd.DataFrame(
data=torch.column_stack([res.map_per_class.mul(100)]),
index=thing_class_names,
columns=['mAP']))
print()
return output, partitions, results