metadata
base_model: google-bert/bert-base-uncased
datasets:
- stanfordnlp/snli
language:
- en
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:494430
- loss:SoftmaxLoss
widget:
- source_sentence: A person out front of a business with a woman statue holding a bottle.
sentences:
- A couple holds hands.
- The young boy is upside down.
- the man is baking some bread
- source_sentence: A person is dressed up in a weird costume with a red tongue sticking out.
sentences:
- thhe man plays a tuba
- Four siblings are climbing on a fake black bear.
- the tongue is blue
- source_sentence: A man on a train is talking on a cellphone.
sentences:
- A man is playing a flute on a bus.
- The woman is sexy.
- two cyclists racing
- source_sentence: An elderly woman giving her daughter a hug.
sentences:
- There are two women hugging.
- A man holds a flag on the street.
- people are sitting on a red roofed bus going to a museum
- source_sentence: >-
A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a
plane with his hands crossed.
sentences:
- A pilot is sitting in his plain with his hands crossed
- The boys are playing outside on a log.
- Two men discuss their love lives.
SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")
# Run inference
sentences = [
'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',
'A pilot is sitting in his plain with his hands crossed',
'The boys are playing outside on a log.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 494,430 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.24 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 10.55 tokens
- max: 26 tokens
- 0: ~31.10%
- 1: ~33.40%
- 2: ~35.50%
- Samples:
premise hypothesis label Two men, one in yellow, are on a wooden boat.
Two men swimming in water
2
Two people sleep on a couch.
Two people are asleep.
0
a little boy is learning to swim with the help of a float board.
The boy is crawling.
2
- Loss:
SoftmaxLoss
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 27,468 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.66 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 10.48 tokens
- max: 31 tokens
- 0: ~36.10%
- 1: ~31.80%
- 2: ~32.10%
- Samples:
premise hypothesis label A taxi cab driver looks stressed out in his car.
a taxi driver is stressed
0
Two men do trick in a park.
The men only sat on the bench in the park, doing nothing.
2
Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.
One lady makes a shocked face at the camera as the photographer tells the women they are lost.
1
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 4warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.1294 | 1000 | 0.9208 | 0.7448 |
0.2589 | 2000 | 0.7095 | 0.6462 |
0.3883 | 3000 | 0.6415 | 0.6199 |
0.5177 | 4000 | 0.6125 | 0.5940 |
0.6472 | 5000 | 0.5935 | 0.5672 |
0.7766 | 6000 | 0.5748 | 0.5550 |
0.9060 | 7000 | 0.5654 | 0.5506 |
1.0355 | 8000 | 0.5524 | 0.5376 |
1.1649 | 9000 | 0.5386 | 0.5319 |
1.2943 | 10000 | 0.5192 | 0.5361 |
1.4238 | 11000 | 0.4863 | 0.5304 |
1.5532 | 12000 | 0.4687 | 0.5278 |
1.6826 | 13000 | 0.4586 | 0.5305 |
1.8121 | 14000 | 0.4474 | 0.5222 |
1.9415 | 15000 | 0.4447 | 0.5237 |
2.0709 | 16000 | 0.434 | 0.5172 |
2.2004 | 17000 | 0.4243 | 0.5235 |
2.3298 | 18000 | 0.398 | 0.5224 |
2.4592 | 19000 | 0.3747 | 0.5344 |
2.5887 | 20000 | 0.3669 | 0.5301 |
2.7181 | 21000 | 0.3583 | 0.5406 |
2.8475 | 22000 | 0.3496 | 0.5354 |
2.9770 | 23000 | 0.3527 | 0.5324 |
3.1064 | 24000 | 0.3419 | 0.5299 |
3.2358 | 25000 | 0.3358 | 0.5456 |
3.3653 | 26000 | 0.3096 | 0.5562 |
3.4947 | 27000 | 0.2964 | 0.5644 |
3.6241 | 28000 | 0.2998 | 0.5565 |
3.7536 | 29000 | 0.2906 | 0.5590 |
3.8830 | 30000 | 0.2923 | 0.5564 |
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}