hchcsuim commited on
Commit
c9d1de1
1 Parent(s): 0365935

Model save

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swin-tiny-patch4-window7-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: batch-size16_FFPP-c23_opencv-1FPS_faces-expand50-aligned_unaugmentation
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: test
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.9300488820494252
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.9313622108708454
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.9830873530984836
35
+ - name: F1
36
+ type: f1
37
+ value: 0.9565260196905766
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # batch-size16_FFPP-c23_opencv-1FPS_faces-expand50-aligned_unaugmentation
44
+
45
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1659
48
+ - Accuracy: 0.9300
49
+ - Precision: 0.9314
50
+ - Recall: 0.9831
51
+ - F1: 0.9565
52
+ - Roc Auc: 0.9799
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - gradient_accumulation_steps: 4
76
+ - total_train_batch_size: 64
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_ratio: 0.1
80
+ - num_epochs: 1
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
85
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
86
+ | 0.1837 | 1.0 | 1381 | 0.1659 | 0.9300 | 0.9314 | 0.9831 | 0.9565 | 0.9799 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.39.2
92
+ - Pytorch 2.2.2
93
+ - Datasets 2.18.0
94
+ - Tokenizers 0.15.2