hcene's picture
hcene/Camembert-xnli
6f2175b verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
model-index:
  - name: legal-data-mDeBERTa_V3
    results: []

legal-data-mDeBERTa_V3

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-mnli-xnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6731
  • Accuracy: 0.7634
  • Precision: 0.7683
  • Recall: 0.7644
  • F1: 0.7623
  • Ratio: 0.3297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 20
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 15
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
1.4203 0.34 10 1.5822 0.6022 0.6054 0.6046 0.5997 0.3226
1.1177 0.69 20 0.8339 0.7240 0.7270 0.7253 0.7258 0.3262
0.9484 1.03 30 0.7998 0.7168 0.7610 0.7192 0.6951 0.3190
0.9257 1.38 40 0.7183 0.7204 0.7221 0.7220 0.7219 0.3297
0.9529 1.72 50 0.7397 0.6989 0.7022 0.7001 0.6959 0.3297
0.9111 2.07 60 0.6820 0.7204 0.7215 0.7216 0.7188 0.3333
0.9021 2.41 70 0.6832 0.7563 0.7644 0.7570 0.7509 0.3333
0.8849 2.76 80 0.7858 0.7204 0.7365 0.7227 0.7079 0.3297
0.8767 3.1 90 0.8523 0.5520 0.6258 0.5527 0.5677 0.1935
0.9186 3.45 100 0.6877 0.7276 0.7430 0.7283 0.7183 0.3262
0.9127 3.79 110 0.6426 0.7348 0.7398 0.7357 0.7298 0.3333
0.9126 4.14 120 0.7509 0.7348 0.7564 0.7370 0.7215 0.3297
0.8477 4.48 130 0.6818 0.7491 0.7684 0.7497 0.7406 0.3262
0.8747 4.83 140 0.7813 0.6810 0.7704 0.6842 0.6067 0.3262
0.9112 5.17 150 0.7799 0.7204 0.8141 0.7205 0.6686 0.3297
0.8767 5.52 160 0.7959 0.6989 0.8418 0.7021 0.6271 0.3297
0.863 5.86 170 0.7007 0.7240 0.7395 0.7247 0.7139 0.3262
0.9029 6.21 180 0.6524 0.7634 0.7717 0.7642 0.7621 0.3262
0.8427 6.55 190 0.7417 0.7133 0.7374 0.7157 0.6957 0.3262
0.8945 6.9 200 0.7312 0.7527 0.7738 0.7532 0.7437 0.3262
0.8913 7.24 210 0.6410 0.7455 0.7523 0.7473 0.7433 0.3297
0.8848 7.59 220 0.7137 0.7563 0.7585 0.7574 0.7567 0.3297
0.8553 7.93 230 0.6940 0.7599 0.7743 0.7605 0.7530 0.3297
0.8154 8.28 240 0.6460 0.7276 0.7453 0.7298 0.7154 0.3297
0.8842 8.62 250 0.7455 0.7563 0.7694 0.7570 0.7498 0.3297
0.8773 8.97 260 0.7369 0.7348 0.7490 0.7367 0.7291 0.3262
0.8615 9.31 270 0.6577 0.7455 0.7539 0.7464 0.7411 0.3297
0.8664 9.66 280 0.6970 0.7563 0.7631 0.7580 0.7545 0.3297
0.8855 10.0 290 0.7167 0.7204 0.7269 0.7224 0.7169 0.3297
0.8564 10.34 300 0.6808 0.7670 0.7846 0.7676 0.7594 0.3297
0.841 10.69 310 0.6604 0.7455 0.7491 0.7472 0.7455 0.3297
0.8415 11.03 320 0.7150 0.7563 0.7694 0.7570 0.7498 0.3297
0.848 11.38 330 0.6495 0.7670 0.7685 0.7682 0.7680 0.3297
0.8648 11.72 340 0.7094 0.7348 0.7562 0.7369 0.7245 0.3262
0.8465 12.07 350 0.7125 0.7384 0.7758 0.7387 0.7181 0.3262
0.8875 12.41 360 0.6962 0.7563 0.7590 0.7573 0.7564 0.3297
0.8192 12.76 370 0.6496 0.7455 0.7539 0.7464 0.7411 0.3297
0.8089 13.1 380 0.6569 0.7599 0.7621 0.7613 0.7607 0.3297
0.8191 13.45 390 0.6808 0.7348 0.7679 0.7372 0.7150 0.3297
0.8468 13.79 400 0.6843 0.7670 0.7789 0.7677 0.7621 0.3297
0.8277 14.14 410 0.6630 0.7599 0.7660 0.7607 0.7578 0.3297
0.8159 14.48 420 0.6621 0.7599 0.7650 0.7608 0.7584 0.3297
0.8803 14.83 430 0.6731 0.7634 0.7683 0.7644 0.7623 0.3297

Framework versions

  • PEFT 0.9.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2