haryoaw's picture
Initial Commit
07280ba
|
raw
history blame
3.98 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - hate_speech_filipino
metrics:
  - accuracy
  - f1
model-index:
  - name: >-
      scenario-kd-from-pre-finetune-silver-div-2-data-hate_speech_filipino-model-xlm-r
    results: []

scenario-kd-from-pre-finetune-silver-div-2-data-hate_speech_filipino-model-xlm-r

This model is a fine-tuned version of xlm-roberta-base on the hate_speech_filipino dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4122
  • Accuracy: 0.7810
  • F1: 0.7699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6969

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.32 100 1.4902 0.7143 0.7119
No log 0.64 200 1.0099 0.7379 0.7416
No log 0.96 300 0.9000 0.7531 0.7410
No log 1.28 400 0.7416 0.7595 0.7548
1.3478 1.6 500 0.7405 0.7703 0.7495
1.3478 1.92 600 0.6557 0.7743 0.7569
1.3478 2.24 700 0.6338 0.7661 0.7656
1.3478 2.56 800 0.6421 0.7682 0.7429
1.3478 2.88 900 0.5503 0.7746 0.7649
0.667 3.19 1000 0.5596 0.7741 0.7623
0.667 3.51 1100 0.6638 0.7729 0.7365
0.667 3.83 1200 0.5504 0.7798 0.7545
0.667 4.15 1300 0.5163 0.7769 0.7613
0.667 4.47 1400 0.6817 0.7498 0.7641
0.4362 4.79 1500 0.5097 0.7717 0.7725
0.4362 5.11 1600 0.5382 0.7765 0.7460
0.4362 5.43 1700 0.5237 0.7800 0.7493
0.4362 5.75 1800 0.4712 0.7786 0.7552
0.4362 6.07 1900 0.4671 0.7755 0.7570
0.3401 6.39 2000 0.4376 0.7859 0.7752
0.3401 6.71 2100 0.4753 0.7706 0.7720
0.3401 7.03 2200 0.4661 0.7854 0.7706
0.3401 7.35 2300 0.4555 0.7774 0.7605
0.3401 7.67 2400 0.4362 0.7812 0.7683
0.2844 7.99 2500 0.4511 0.7864 0.7734
0.2844 8.31 2600 0.4433 0.7767 0.7707
0.2844 8.63 2700 0.5001 0.7656 0.7699
0.2844 8.95 2800 0.4337 0.7810 0.7723
0.2844 9.27 2900 0.4145 0.7812 0.7668
0.2436 9.58 3000 0.4143 0.7840 0.7698
0.2436 9.9 3100 0.3993 0.7786 0.7687
0.2436 10.22 3200 0.4030 0.7899 0.7734
0.2436 10.54 3300 0.4054 0.7826 0.7666
0.2436 10.86 3400 0.3996 0.7762 0.7716
0.2246 11.18 3500 0.4122 0.7810 0.7699

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3