metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only_alpha
results: []
scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only_alpha
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.4834
- Accuracy: 0.3758
- F1: 0.3692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1123
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.09 | 250 | 1.1269 | 0.3302 | 0.2264 |
1.0552 | 2.17 | 500 | 1.4862 | 0.3673 | 0.3240 |
1.0552 | 3.26 | 750 | 2.0425 | 0.3580 | 0.3105 |
0.4849 | 4.35 | 1000 | 2.7827 | 0.3673 | 0.3562 |
0.4849 | 5.43 | 1250 | 2.3787 | 0.3804 | 0.3790 |
0.1731 | 6.52 | 1500 | 3.5404 | 0.3873 | 0.3523 |
0.1731 | 7.61 | 1750 | 4.1335 | 0.3765 | 0.3561 |
0.0878 | 8.7 | 2000 | 4.4114 | 0.375 | 0.3748 |
0.0878 | 9.78 | 2250 | 4.9951 | 0.3650 | 0.3587 |
0.036 | 10.87 | 2500 | 5.1386 | 0.3642 | 0.3569 |
0.036 | 11.96 | 2750 | 5.4524 | 0.3711 | 0.3499 |
0.0297 | 13.04 | 3000 | 5.4964 | 0.3681 | 0.3565 |
0.0297 | 14.13 | 3250 | 5.3291 | 0.3765 | 0.3709 |
0.0225 | 15.22 | 3500 | 5.6184 | 0.3719 | 0.3346 |
0.0225 | 16.3 | 3750 | 5.4079 | 0.3719 | 0.3466 |
0.0144 | 17.39 | 4000 | 5.6999 | 0.3634 | 0.3538 |
0.0144 | 18.48 | 4250 | 5.7290 | 0.3681 | 0.3575 |
0.007 | 19.57 | 4500 | 5.9349 | 0.3673 | 0.3272 |
0.007 | 20.65 | 4750 | 5.7265 | 0.3789 | 0.3760 |
0.0064 | 21.74 | 5000 | 6.1464 | 0.3611 | 0.3370 |
0.0064 | 22.83 | 5250 | 6.1483 | 0.3765 | 0.3678 |
0.0026 | 23.91 | 5500 | 6.3733 | 0.3742 | 0.3688 |
0.0026 | 25.0 | 5750 | 6.3795 | 0.3704 | 0.3498 |
0.002 | 26.09 | 6000 | 6.4692 | 0.3735 | 0.3582 |
0.002 | 27.17 | 6250 | 6.5994 | 0.3727 | 0.3448 |
0.0006 | 28.26 | 6500 | 6.4658 | 0.3758 | 0.3693 |
0.0006 | 29.35 | 6750 | 6.4834 | 0.3758 | 0.3692 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3