metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-NON-KD-PR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44
results: []
scenario-NON-KD-PR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.1657
- Accuracy: 0.4577
- F1: 0.4543
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.7241 | 100 | 1.1068 | 0.4330 | 0.3826 |
No log | 3.4483 | 200 | 1.4495 | 0.4533 | 0.4238 |
No log | 5.1724 | 300 | 1.5295 | 0.4586 | 0.4497 |
No log | 6.8966 | 400 | 2.0122 | 0.4537 | 0.4516 |
0.5768 | 8.6207 | 500 | 3.0885 | 0.4493 | 0.4417 |
0.5768 | 10.3448 | 600 | 3.3878 | 0.4541 | 0.4497 |
0.5768 | 12.0690 | 700 | 3.4115 | 0.4586 | 0.4564 |
0.5768 | 13.7931 | 800 | 3.8779 | 0.4590 | 0.4572 |
0.5768 | 15.5172 | 900 | 4.1514 | 0.4590 | 0.4579 |
0.0737 | 17.2414 | 1000 | 4.6699 | 0.4462 | 0.4281 |
0.0737 | 18.9655 | 1100 | 4.6724 | 0.4608 | 0.4612 |
0.0737 | 20.6897 | 1200 | 4.6790 | 0.4603 | 0.4562 |
0.0737 | 22.4138 | 1300 | 4.9305 | 0.4581 | 0.4564 |
0.0737 | 24.1379 | 1400 | 5.0621 | 0.4568 | 0.4503 |
0.0099 | 25.8621 | 1500 | 5.0787 | 0.4608 | 0.4574 |
0.0099 | 27.5862 | 1600 | 5.1428 | 0.4581 | 0.4549 |
0.0099 | 29.3103 | 1700 | 5.1657 | 0.4577 | 0.4543 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1