metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-NON-KD-PR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only_alpha
results: []
scenario-NON-KD-PR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only_alpha
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.4350
- Accuracy: 0.4537
- F1: 0.4493
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1123
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.09 | 250 | 1.2630 | 0.4761 | 0.4753 |
0.8829 | 2.17 | 500 | 1.4325 | 0.4529 | 0.4468 |
0.8829 | 3.26 | 750 | 1.7675 | 0.4282 | 0.4077 |
0.538 | 4.35 | 1000 | 1.9149 | 0.4298 | 0.4134 |
0.538 | 5.43 | 1250 | 2.1555 | 0.4552 | 0.4471 |
0.2691 | 6.52 | 1500 | 2.7676 | 0.4637 | 0.4600 |
0.2691 | 7.61 | 1750 | 2.5963 | 0.4491 | 0.4431 |
0.1585 | 8.7 | 2000 | 3.0069 | 0.4437 | 0.4364 |
0.1585 | 9.78 | 2250 | 2.9894 | 0.4645 | 0.4621 |
0.1083 | 10.87 | 2500 | 3.6542 | 0.4537 | 0.4465 |
0.1083 | 11.96 | 2750 | 3.5648 | 0.4684 | 0.4695 |
0.0745 | 13.04 | 3000 | 3.7903 | 0.4761 | 0.4771 |
0.0745 | 14.13 | 3250 | 4.0663 | 0.4645 | 0.4623 |
0.0545 | 15.22 | 3500 | 4.1840 | 0.4830 | 0.4837 |
0.0545 | 16.3 | 3750 | 4.3967 | 0.4653 | 0.4640 |
0.04 | 17.39 | 4000 | 4.3967 | 0.4738 | 0.4714 |
0.04 | 18.48 | 4250 | 4.5309 | 0.4637 | 0.4600 |
0.0291 | 19.57 | 4500 | 4.5025 | 0.4715 | 0.4711 |
0.0291 | 20.65 | 4750 | 4.9500 | 0.4576 | 0.4554 |
0.0217 | 21.74 | 5000 | 5.0171 | 0.4498 | 0.4443 |
0.0217 | 22.83 | 5250 | 4.8470 | 0.4622 | 0.4618 |
0.018 | 23.91 | 5500 | 4.9003 | 0.4699 | 0.4698 |
0.018 | 25.0 | 5750 | 5.1935 | 0.4522 | 0.4491 |
0.0132 | 26.09 | 6000 | 5.1915 | 0.4630 | 0.4631 |
0.0132 | 27.17 | 6250 | 5.3879 | 0.4529 | 0.4478 |
0.0077 | 28.26 | 6500 | 5.2970 | 0.4637 | 0.4628 |
0.0077 | 29.35 | 6750 | 5.4350 | 0.4537 | 0.4493 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3