metadata
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: >-
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
results: []
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: 4.7763
- Accuracy: 0.5525
- F1: 0.5514
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0802 | 1.09 | 500 | 1.0761 | 0.4776 | 0.4641 |
0.9869 | 2.17 | 1000 | 1.0145 | 0.5320 | 0.5250 |
0.8881 | 3.26 | 1500 | 0.9953 | 0.5432 | 0.5391 |
0.7877 | 4.35 | 2000 | 1.0837 | 0.5340 | 0.5311 |
0.6671 | 5.43 | 2500 | 1.2702 | 0.5394 | 0.5411 |
0.5716 | 6.52 | 3000 | 1.4643 | 0.5440 | 0.5409 |
0.4817 | 7.61 | 3500 | 1.6304 | 0.5448 | 0.5336 |
0.4102 | 8.7 | 4000 | 1.7103 | 0.5301 | 0.5267 |
0.3334 | 9.78 | 4500 | 2.0038 | 0.5343 | 0.5334 |
0.2776 | 10.87 | 5000 | 1.8016 | 0.5475 | 0.5472 |
0.2349 | 11.96 | 5500 | 2.0203 | 0.5282 | 0.5280 |
0.2017 | 13.04 | 6000 | 2.4490 | 0.5359 | 0.5334 |
0.1727 | 14.13 | 6500 | 2.5313 | 0.5378 | 0.5382 |
0.1491 | 15.22 | 7000 | 2.3797 | 0.5390 | 0.5388 |
0.1425 | 16.3 | 7500 | 2.4724 | 0.5444 | 0.5446 |
0.1265 | 17.39 | 8000 | 2.9398 | 0.5413 | 0.5389 |
0.1185 | 18.48 | 8500 | 2.3527 | 0.5370 | 0.5370 |
0.1038 | 19.57 | 9000 | 3.2756 | 0.5482 | 0.5442 |
0.1071 | 20.65 | 9500 | 3.0308 | 0.5432 | 0.5441 |
0.0865 | 21.74 | 10000 | 3.1408 | 0.5297 | 0.5296 |
0.0813 | 22.83 | 10500 | 3.3928 | 0.5436 | 0.5434 |
0.0831 | 23.91 | 11000 | 3.4793 | 0.5320 | 0.5339 |
0.0736 | 25.0 | 11500 | 3.2782 | 0.5451 | 0.5452 |
0.0672 | 26.09 | 12000 | 3.4270 | 0.5428 | 0.5396 |
0.0616 | 27.17 | 12500 | 3.7192 | 0.5471 | 0.5425 |
0.0588 | 28.26 | 13000 | 3.3739 | 0.5421 | 0.5424 |
0.0537 | 29.35 | 13500 | 3.5891 | 0.5421 | 0.5393 |
0.0534 | 30.43 | 14000 | 3.5400 | 0.5436 | 0.5391 |
0.0503 | 31.52 | 14500 | 4.1166 | 0.5409 | 0.5378 |
0.0431 | 32.61 | 15000 | 4.1346 | 0.5374 | 0.5339 |
0.0423 | 33.7 | 15500 | 3.9483 | 0.5478 | 0.5456 |
0.0371 | 34.78 | 16000 | 4.0371 | 0.5436 | 0.5429 |
0.0339 | 35.87 | 16500 | 4.0302 | 0.5478 | 0.5480 |
0.0381 | 36.96 | 17000 | 4.0057 | 0.5432 | 0.5425 |
0.0274 | 38.04 | 17500 | 4.5734 | 0.5521 | 0.5520 |
0.0288 | 39.13 | 18000 | 4.4791 | 0.5502 | 0.5472 |
0.0203 | 40.22 | 18500 | 4.7187 | 0.5536 | 0.5538 |
0.0248 | 41.3 | 19000 | 4.7855 | 0.5486 | 0.5490 |
0.025 | 42.39 | 19500 | 4.4324 | 0.5502 | 0.5471 |
0.0211 | 43.48 | 20000 | 4.7410 | 0.5475 | 0.5470 |
0.0215 | 44.57 | 20500 | 4.6235 | 0.5478 | 0.5483 |
0.0188 | 45.65 | 21000 | 4.6657 | 0.5517 | 0.5499 |
0.0163 | 46.74 | 21500 | 4.7207 | 0.5509 | 0.5505 |
0.0136 | 47.83 | 22000 | 4.7870 | 0.5525 | 0.5523 |
0.0131 | 48.91 | 22500 | 4.8396 | 0.5505 | 0.5501 |
0.0207 | 50.0 | 23000 | 4.7763 | 0.5525 | 0.5514 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3