metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: >-
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
results: []
scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
This model is a fine-tuned version of xlm-roberta-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: 3.2943
- Accuracy: 0.5494
- F1: 0.5481
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 222
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0706 | 1.09 | 500 | 1.0260 | 0.4946 | 0.4746 |
0.97 | 2.17 | 1000 | 0.9626 | 0.5270 | 0.5111 |
0.9007 | 3.26 | 1500 | 0.9517 | 0.5490 | 0.5506 |
0.8292 | 4.35 | 2000 | 0.9865 | 0.5475 | 0.5339 |
0.7773 | 5.43 | 2500 | 1.0123 | 0.5475 | 0.5388 |
0.7155 | 6.52 | 3000 | 1.0156 | 0.5536 | 0.5509 |
0.6707 | 7.61 | 3500 | 1.0641 | 0.5637 | 0.5629 |
0.6081 | 8.7 | 4000 | 1.1244 | 0.5617 | 0.5614 |
0.5489 | 9.78 | 4500 | 1.1851 | 0.5475 | 0.5404 |
0.503 | 10.87 | 5000 | 1.3213 | 0.5586 | 0.5591 |
0.4602 | 11.96 | 5500 | 1.4164 | 0.5563 | 0.5520 |
0.4134 | 13.04 | 6000 | 1.4394 | 0.5482 | 0.5414 |
0.3697 | 14.13 | 6500 | 1.5564 | 0.5529 | 0.5501 |
0.3256 | 15.22 | 7000 | 1.5412 | 0.5478 | 0.5465 |
0.3028 | 16.3 | 7500 | 1.6169 | 0.5374 | 0.5353 |
0.2673 | 17.39 | 8000 | 1.7963 | 0.5436 | 0.5432 |
0.2501 | 18.48 | 8500 | 1.7266 | 0.5517 | 0.5499 |
0.2225 | 19.57 | 9000 | 1.9252 | 0.5532 | 0.5472 |
0.2021 | 20.65 | 9500 | 1.9622 | 0.5563 | 0.5542 |
0.1875 | 21.74 | 10000 | 1.9973 | 0.5471 | 0.5463 |
0.1681 | 22.83 | 10500 | 2.1299 | 0.5386 | 0.5307 |
0.1534 | 23.91 | 11000 | 2.0761 | 0.5463 | 0.5416 |
0.1427 | 25.0 | 11500 | 2.2814 | 0.5475 | 0.5471 |
0.1304 | 26.09 | 12000 | 2.4128 | 0.5544 | 0.5451 |
0.1126 | 27.17 | 12500 | 2.4318 | 0.5370 | 0.5327 |
0.1169 | 28.26 | 13000 | 2.5110 | 0.5451 | 0.5432 |
0.1044 | 29.35 | 13500 | 2.5768 | 0.5467 | 0.5432 |
0.1011 | 30.43 | 14000 | 2.6120 | 0.5486 | 0.5428 |
0.0982 | 31.52 | 14500 | 2.5795 | 0.5544 | 0.5541 |
0.0854 | 32.61 | 15000 | 2.7525 | 0.5482 | 0.5497 |
0.0853 | 33.7 | 15500 | 2.7322 | 0.5575 | 0.5557 |
0.0851 | 34.78 | 16000 | 2.7708 | 0.5417 | 0.5375 |
0.0726 | 35.87 | 16500 | 2.8363 | 0.5451 | 0.5417 |
0.0706 | 36.96 | 17000 | 2.8634 | 0.5505 | 0.5494 |
0.0653 | 38.04 | 17500 | 2.9653 | 0.5444 | 0.5434 |
0.0669 | 39.13 | 18000 | 3.0624 | 0.5432 | 0.5417 |
0.0585 | 40.22 | 18500 | 3.1669 | 0.5432 | 0.5392 |
0.059 | 41.3 | 19000 | 3.0692 | 0.5548 | 0.5544 |
0.048 | 42.39 | 19500 | 3.2014 | 0.5494 | 0.5482 |
0.0479 | 43.48 | 20000 | 3.2452 | 0.5428 | 0.5409 |
0.052 | 44.57 | 20500 | 3.2338 | 0.5478 | 0.5476 |
0.0477 | 45.65 | 21000 | 3.2556 | 0.5444 | 0.5424 |
0.0395 | 46.74 | 21500 | 3.2952 | 0.5444 | 0.5420 |
0.0477 | 47.83 | 22000 | 3.2726 | 0.5509 | 0.5500 |
0.0408 | 48.91 | 22500 | 3.2894 | 0.5471 | 0.5457 |
0.0407 | 50.0 | 23000 | 3.2943 | 0.5494 | 0.5481 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3