haryoaw's picture
Initial Commit
cf476e1 verified
|
raw
history blame
3.35 kB
metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only_beta-jason
    results: []

scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only_beta-jason

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 15.7103
  • Accuracy: 0.4028
  • F1: 0.4028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 6666
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.09 250 11.8668 0.3897 0.3820
13.776 2.17 500 11.3224 0.3873 0.3811
13.776 3.26 750 10.7331 0.3881 0.3824
11.4609 4.35 1000 11.7060 0.4035 0.4015
11.4609 5.43 1250 11.1579 0.3997 0.3802
9.9802 6.52 1500 11.6003 0.4066 0.4061
9.9802 7.61 1750 11.6088 0.4059 0.4048
8.6874 8.7 2000 11.9784 0.3904 0.3814
8.6874 9.78 2250 12.2923 0.4113 0.4097
7.5941 10.87 2500 13.1464 0.3858 0.3823
7.5941 11.96 2750 12.8350 0.3966 0.3946
6.5229 13.04 3000 13.1611 0.3850 0.3819
6.5229 14.13 3250 14.1517 0.4005 0.3995
5.6501 15.22 3500 14.0929 0.4005 0.3930
5.6501 16.3 3750 14.1956 0.4074 0.4070
4.9968 17.39 4000 13.8417 0.4043 0.4040
4.9968 18.48 4250 14.3873 0.3897 0.3879
4.4769 19.57 4500 15.4822 0.4244 0.4226
4.4769 20.65 4750 15.1566 0.3958 0.3952
3.9676 21.74 5000 14.8283 0.4159 0.4135
3.9676 22.83 5250 15.2368 0.3927 0.3928
3.6886 23.91 5500 15.4609 0.4005 0.4006
3.6886 25.0 5750 14.7384 0.4059 0.4038
3.4119 26.09 6000 15.4645 0.3858 0.3857
3.4119 27.17 6250 15.9168 0.3974 0.3967
3.1245 28.26 6500 15.4980 0.3920 0.3923
3.1245 29.35 6750 15.7103 0.4028 0.4028

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3