haryoaw commited on
Commit
6e8d0f8
·
verified ·
1 Parent(s): c159936

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +175 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_155
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_155
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.1074
24
+ - Accuracy: 0.8669
25
+ - F1: 0.8467
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 55
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
56
+ | 1.7059 | 0.27 | 5000 | 1.9979 | 0.8192 | 0.7823 |
57
+ | 1.2894 | 0.53 | 10000 | 1.7859 | 0.8342 | 0.8022 |
58
+ | 1.1214 | 0.8 | 15000 | 1.6643 | 0.8392 | 0.8118 |
59
+ | 0.8728 | 1.07 | 20000 | 1.6370 | 0.8389 | 0.8140 |
60
+ | 0.7934 | 1.34 | 25000 | 1.5969 | 0.8442 | 0.8171 |
61
+ | 0.7466 | 1.6 | 30000 | 1.5752 | 0.8434 | 0.8231 |
62
+ | 0.707 | 1.87 | 35000 | 1.5116 | 0.8482 | 0.8282 |
63
+ | 0.6114 | 2.14 | 40000 | 1.4857 | 0.8502 | 0.8282 |
64
+ | 0.5708 | 2.41 | 45000 | 1.4695 | 0.8512 | 0.8297 |
65
+ | 0.5702 | 2.67 | 50000 | 1.4431 | 0.8495 | 0.8277 |
66
+ | 0.5611 | 2.94 | 55000 | 1.4096 | 0.8554 | 0.8356 |
67
+ | 0.4894 | 3.21 | 60000 | 1.4057 | 0.8552 | 0.8353 |
68
+ | 0.4851 | 3.47 | 65000 | 1.4022 | 0.8548 | 0.8325 |
69
+ | 0.4802 | 3.74 | 70000 | 1.3887 | 0.8549 | 0.8339 |
70
+ | 0.4699 | 4.01 | 75000 | 1.3778 | 0.8550 | 0.8359 |
71
+ | 0.4361 | 4.28 | 80000 | 1.3448 | 0.8581 | 0.8379 |
72
+ | 0.4315 | 4.54 | 85000 | 1.3343 | 0.8588 | 0.8341 |
73
+ | 0.4145 | 4.81 | 90000 | 1.3291 | 0.8593 | 0.8361 |
74
+ | 0.3971 | 5.08 | 95000 | 1.3136 | 0.8582 | 0.8371 |
75
+ | 0.3976 | 5.34 | 100000 | 1.3166 | 0.8568 | 0.8398 |
76
+ | 0.3884 | 5.61 | 105000 | 1.3187 | 0.8574 | 0.8361 |
77
+ | 0.3797 | 5.88 | 110000 | 1.3076 | 0.8580 | 0.8352 |
78
+ | 0.3801 | 6.15 | 115000 | 1.2889 | 0.8581 | 0.8381 |
79
+ | 0.3735 | 6.41 | 120000 | 1.2824 | 0.8593 | 0.8394 |
80
+ | 0.3734 | 6.68 | 125000 | 1.2736 | 0.8603 | 0.8399 |
81
+ | 0.3752 | 6.95 | 130000 | 1.2806 | 0.8576 | 0.8341 |
82
+ | 0.3477 | 7.22 | 135000 | 1.2640 | 0.8606 | 0.8405 |
83
+ | 0.3464 | 7.48 | 140000 | 1.2610 | 0.8605 | 0.8390 |
84
+ | 0.3437 | 7.75 | 145000 | 1.2585 | 0.8599 | 0.8379 |
85
+ | 0.3329 | 8.02 | 150000 | 1.2506 | 0.8619 | 0.8399 |
86
+ | 0.3255 | 8.28 | 155000 | 1.2506 | 0.8612 | 0.8398 |
87
+ | 0.3198 | 8.55 | 160000 | 1.2514 | 0.8611 | 0.8400 |
88
+ | 0.3337 | 8.82 | 165000 | 1.2543 | 0.8608 | 0.8416 |
89
+ | 0.3044 | 9.09 | 170000 | 1.2677 | 0.8585 | 0.8406 |
90
+ | 0.3045 | 9.35 | 175000 | 1.2546 | 0.8603 | 0.8394 |
91
+ | 0.3151 | 9.62 | 180000 | 1.2258 | 0.8616 | 0.8420 |
92
+ | 0.3091 | 9.89 | 185000 | 1.2356 | 0.8618 | 0.8409 |
93
+ | 0.2889 | 10.15 | 190000 | 1.2244 | 0.8613 | 0.8417 |
94
+ | 0.2931 | 10.42 | 195000 | 1.2106 | 0.8623 | 0.8423 |
95
+ | 0.2923 | 10.69 | 200000 | 1.2272 | 0.8611 | 0.8409 |
96
+ | 0.2988 | 10.96 | 205000 | 1.2070 | 0.8632 | 0.8418 |
97
+ | 0.2817 | 11.22 | 210000 | 1.2079 | 0.8624 | 0.8429 |
98
+ | 0.2878 | 11.49 | 215000 | 1.2132 | 0.8633 | 0.8410 |
99
+ | 0.2803 | 11.76 | 220000 | 1.2023 | 0.8619 | 0.8428 |
100
+ | 0.2769 | 12.03 | 225000 | 1.2024 | 0.8621 | 0.8438 |
101
+ | 0.2807 | 12.29 | 230000 | 1.1938 | 0.8632 | 0.8434 |
102
+ | 0.2795 | 12.56 | 235000 | 1.2024 | 0.8632 | 0.8417 |
103
+ | 0.277 | 12.83 | 240000 | 1.1924 | 0.8623 | 0.8419 |
104
+ | 0.2602 | 13.09 | 245000 | 1.1960 | 0.8623 | 0.8424 |
105
+ | 0.268 | 13.36 | 250000 | 1.1893 | 0.8617 | 0.8427 |
106
+ | 0.2653 | 13.63 | 255000 | 1.1890 | 0.8620 | 0.8394 |
107
+ | 0.2558 | 13.9 | 260000 | 1.1790 | 0.8634 | 0.8422 |
108
+ | 0.2602 | 14.16 | 265000 | 1.1760 | 0.8645 | 0.8429 |
109
+ | 0.256 | 14.43 | 270000 | 1.1714 | 0.8635 | 0.8442 |
110
+ | 0.2463 | 14.7 | 275000 | 1.1855 | 0.8626 | 0.8421 |
111
+ | 0.2546 | 14.96 | 280000 | 1.1791 | 0.8640 | 0.8439 |
112
+ | 0.2499 | 15.23 | 285000 | 1.1763 | 0.8640 | 0.8451 |
113
+ | 0.2539 | 15.5 | 290000 | 1.1693 | 0.8643 | 0.8447 |
114
+ | 0.2466 | 15.77 | 295000 | 1.1607 | 0.8646 | 0.8444 |
115
+ | 0.2376 | 16.03 | 300000 | 1.1665 | 0.8637 | 0.8427 |
116
+ | 0.2397 | 16.3 | 305000 | 1.1754 | 0.8639 | 0.8441 |
117
+ | 0.2408 | 16.57 | 310000 | 1.1732 | 0.8639 | 0.8437 |
118
+ | 0.2443 | 16.84 | 315000 | 1.1621 | 0.8631 | 0.8421 |
119
+ | 0.2273 | 17.1 | 320000 | 1.1572 | 0.8646 | 0.8447 |
120
+ | 0.2314 | 17.37 | 325000 | 1.1578 | 0.8643 | 0.8438 |
121
+ | 0.2376 | 17.64 | 330000 | 1.1571 | 0.8644 | 0.8434 |
122
+ | 0.2296 | 17.9 | 335000 | 1.1504 | 0.8657 | 0.8470 |
123
+ | 0.2254 | 18.17 | 340000 | 1.1542 | 0.8640 | 0.8435 |
124
+ | 0.2305 | 18.44 | 345000 | 1.1599 | 0.8640 | 0.8427 |
125
+ | 0.2236 | 18.71 | 350000 | 1.1566 | 0.8638 | 0.8439 |
126
+ | 0.2276 | 18.97 | 355000 | 1.1425 | 0.8661 | 0.8469 |
127
+ | 0.2223 | 19.24 | 360000 | 1.1580 | 0.8648 | 0.8454 |
128
+ | 0.2242 | 19.51 | 365000 | 1.1406 | 0.8651 | 0.8455 |
129
+ | 0.2235 | 19.77 | 370000 | 1.1490 | 0.8652 | 0.8455 |
130
+ | 0.2183 | 20.04 | 375000 | 1.1342 | 0.8652 | 0.8451 |
131
+ | 0.2123 | 20.31 | 380000 | 1.1457 | 0.8649 | 0.8443 |
132
+ | 0.2162 | 20.58 | 385000 | 1.1328 | 0.8655 | 0.8452 |
133
+ | 0.2111 | 20.84 | 390000 | 1.1362 | 0.8657 | 0.8450 |
134
+ | 0.2121 | 21.11 | 395000 | 1.1349 | 0.8655 | 0.8450 |
135
+ | 0.204 | 21.38 | 400000 | 1.1332 | 0.8651 | 0.8447 |
136
+ | 0.2133 | 21.65 | 405000 | 1.1330 | 0.8642 | 0.8438 |
137
+ | 0.2115 | 21.91 | 410000 | 1.1339 | 0.8647 | 0.8440 |
138
+ | 0.2054 | 22.18 | 415000 | 1.1316 | 0.8647 | 0.8444 |
139
+ | 0.211 | 22.45 | 420000 | 1.1286 | 0.8660 | 0.8452 |
140
+ | 0.2015 | 22.71 | 425000 | 1.1290 | 0.8656 | 0.8462 |
141
+ | 0.2112 | 22.98 | 430000 | 1.1342 | 0.8654 | 0.8450 |
142
+ | 0.2016 | 23.25 | 435000 | 1.1288 | 0.8650 | 0.8453 |
143
+ | 0.1991 | 23.52 | 440000 | 1.1303 | 0.8657 | 0.8468 |
144
+ | 0.1988 | 23.78 | 445000 | 1.1238 | 0.8658 | 0.8463 |
145
+ | 0.1955 | 24.05 | 450000 | 1.1189 | 0.8664 | 0.8471 |
146
+ | 0.1964 | 24.32 | 455000 | 1.1254 | 0.8655 | 0.8447 |
147
+ | 0.2009 | 24.58 | 460000 | 1.1209 | 0.8659 | 0.8468 |
148
+ | 0.1999 | 24.85 | 465000 | 1.1166 | 0.8657 | 0.8449 |
149
+ | 0.1871 | 25.12 | 470000 | 1.1251 | 0.8657 | 0.8449 |
150
+ | 0.1934 | 25.39 | 475000 | 1.1145 | 0.8657 | 0.8446 |
151
+ | 0.1933 | 25.65 | 480000 | 1.1187 | 0.8651 | 0.8453 |
152
+ | 0.197 | 25.92 | 485000 | 1.1188 | 0.8658 | 0.8448 |
153
+ | 0.1938 | 26.19 | 490000 | 1.1176 | 0.8657 | 0.8455 |
154
+ | 0.196 | 26.46 | 495000 | 1.1221 | 0.8660 | 0.8459 |
155
+ | 0.1868 | 26.72 | 500000 | 1.1166 | 0.8660 | 0.8454 |
156
+ | 0.1917 | 26.99 | 505000 | 1.1148 | 0.8668 | 0.8468 |
157
+ | 0.1893 | 27.26 | 510000 | 1.1130 | 0.8660 | 0.8457 |
158
+ | 0.1881 | 27.52 | 515000 | 1.1138 | 0.8658 | 0.8454 |
159
+ | 0.1857 | 27.79 | 520000 | 1.1139 | 0.8662 | 0.8457 |
160
+ | 0.1904 | 28.06 | 525000 | 1.1112 | 0.8657 | 0.8457 |
161
+ | 0.186 | 28.33 | 530000 | 1.1121 | 0.8664 | 0.8454 |
162
+ | 0.186 | 28.59 | 535000 | 1.1115 | 0.8665 | 0.8471 |
163
+ | 0.1866 | 28.86 | 540000 | 1.1091 | 0.8659 | 0.8450 |
164
+ | 0.1847 | 29.13 | 545000 | 1.1094 | 0.8668 | 0.8467 |
165
+ | 0.1826 | 29.39 | 550000 | 1.1116 | 0.8662 | 0.8463 |
166
+ | 0.1831 | 29.66 | 555000 | 1.1085 | 0.8660 | 0.8459 |
167
+ | 0.1819 | 29.93 | 560000 | 1.1074 | 0.8669 | 0.8467 |
168
+
169
+
170
+ ### Framework versions
171
+
172
+ - Transformers 4.33.3
173
+ - Pytorch 2.1.1+cu121
174
+ - Datasets 2.14.5
175
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"it-IT": {"f1": 0.832889108550974, "accuracy": 0.8762609280430397}, "tr-TR": {"f1": 0.818537020158436, "accuracy": 0.8685272360457297}, "ms-MY": {"f1": 0.8302059429480021, "accuracy": 0.8705447209145931}, "zh-TW": {"f1": 0.8279807622713402, "accuracy": 0.8486886348352387}, "ta-IN": {"f1": 0.83364414689888, "accuracy": 0.8601210490921318}, "fr-FR": {"f1": 0.8241738213506254, "accuracy": 0.8779421654337592}, "zh-CN": {"f1": 0.8276795554784833, "accuracy": 0.8665097511768661}, "ca-ES": {"f1": 0.8326074621966286, "accuracy": 0.871217215870881}, "mn-MN": {"f1": 0.8123490210533703, "accuracy": 0.8597848016139878}, "he-IL": {"f1": 0.8179338845472476, "accuracy": 0.8597848016139878}, "th-TH": {"f1": 0.8171772546365436, "accuracy": 0.8574310692669805}, "hu-HU": {"f1": 0.8161954928141432, "accuracy": 0.8691997310020175}, "ml-IN": {"f1": 0.8359861977765802, "accuracy": 0.8695359784801614}, "el-GR": {"f1": 0.8327433412969506, "accuracy": 0.8691997310020175}, "ur-PK": {"f1": 0.8025508528973168, "accuracy": 0.855749831876261}, "bn-BD": {"f1": 0.8169596670272451, "accuracy": 0.8591123066577001}, "jv-ID": {"f1": 0.831369000817743, "accuracy": 0.8527236045729657}, "ro-RO": {"f1": 0.8433856582260201, "accuracy": 0.8823133826496301}, "tl-PH": {"f1": 0.8149486268394082, "accuracy": 0.8587760591795561}, "de-DE": {"f1": 0.8346028127280568, "accuracy": 0.8715534633490248}, "my-MM": {"f1": 0.811213785293948, "accuracy": 0.8567585743106927}, "af-ZA": {"f1": 0.8252338114803054, "accuracy": 0.871217215870881}, "hy-AM": {"f1": 0.8135189131819056, "accuracy": 0.859448554135844}, "da-DK": {"f1": 0.8474857981609136, "accuracy": 0.8887020847343645}, "hi-IN": {"f1": 0.8109444840590283, "accuracy": 0.8668459986550101}, "te-IN": {"f1": 0.8115501191012864, "accuracy": 0.8537323470073974}, "lv-LV": {"f1": 0.8327976254178131, "accuracy": 0.8698722259583053}, "pt-PT": {"f1": 0.8273010755406831, "accuracy": 0.8732347007397444}, "km-KH": {"f1": 0.7471834527310578, "accuracy": 0.7958977807666443}, "sw-KE": {"f1": 0.809236037828131, "accuracy": 0.8574310692669805}, "sv-SE": {"f1": 0.8379680890862067, "accuracy": 0.8853396099529254}, "is-IS": {"f1": 0.8219342844519139, "accuracy": 0.8604572965702757}, "fi-FI": {"f1": 0.8057634784074406, "accuracy": 0.8584398117014123}, "nl-NL": {"f1": 0.8314293417996921, "accuracy": 0.8799596503026227}, "ko-KR": {"f1": 0.8372746521086321, "accuracy": 0.8685272360457297}, "pl-PL": {"f1": 0.8453801720453257, "accuracy": 0.8779421654337592}, "id-ID": {"f1": 0.8339673783276652, "accuracy": 0.8739071956960323}, "sl-SL": {"f1": 0.8069664123949157, "accuracy": 0.8621385339609953}, "es-ES": {"f1": 0.843036471973471, "accuracy": 0.8776059179556154}, "am-ET": {"f1": 0.7980556297019975, "accuracy": 0.8443174176193678}, "az-AZ": {"f1": 0.8355495681435484, "accuracy": 0.8739071956960323}, "vi-VN": {"f1": 0.8202056155587083, "accuracy": 0.8688634835238735}, "ru-RU": {"f1": 0.8358157611781809, "accuracy": 0.8769334229993275}, "en-US": {"f1": 0.8539971210223826, "accuracy": 0.8927370544720915}, "kn-IN": {"f1": 0.8153077170067747, "accuracy": 0.8604572965702757}, "sq-AL": {"f1": 0.8319038719452188, "accuracy": 0.871217215870881}, "nb-NO": {"f1": 0.8315154614235011, "accuracy": 0.8786146603900471}, "fa-IR": {"f1": 0.8289528789213585, "accuracy": 0.8786146603900471}, "ar-SA": {"f1": 0.7957144967999624, "accuracy": 0.8308675184936113}, "ka-GE": {"f1": 0.7863873957831125, "accuracy": 0.8234700739744452}, "ja-JP": {"f1": 0.8356560954325041, "accuracy": 0.8856758574310692}, "cy-GB": {"f1": 0.7973670895463889, "accuracy": 0.8537323470073974}, "all": {"f1": 0.8226893453142188, "accuracy": 0.8650677667994413}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:766ff916a98e9a87beb22d11555bde3f5e90682d34cb7260477dbcea77dbe655
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9656b0f74df4b9ba5c62e891d951a33fb6c498de9b8bb86d22401b2a666556f
3
+ size 4600