haryoaw's picture
Initial Commit
63982c5 verified
|
raw
history blame
5.38 kB
metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
  - f1
model-index:
  - name: scenario-KD-PO-MSV-CL-D2_data-cl-massive_all_1_166
    results: []

scenario-KD-PO-MSV-CL-D2_data-cl-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0186
  • Accuracy: 0.6461
  • F1: 0.6134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2524 0.56 5000 5.6187 0.6299 0.5728
1.3325 1.11 10000 5.4671 0.6450 0.5924
1.2156 1.67 15000 6.0747 0.6250 0.5912
0.8855 2.22 20000 5.8471 0.6355 0.5857
0.8518 2.78 25000 6.2545 0.6303 0.5845
0.6853 3.33 30000 6.0057 0.6408 0.6017
0.6658 3.89 35000 6.0161 0.6423 0.6002
0.5544 4.45 40000 6.0854 0.6392 0.6006
0.5357 5.0 45000 6.2732 0.6283 0.5888
0.4924 5.56 50000 6.4624 0.6277 0.5952
0.4369 6.11 55000 6.2119 0.6354 0.5944
0.4276 6.67 60000 6.2395 0.6425 0.6006
0.3974 7.23 65000 6.6542 0.6264 0.5893
0.404 7.78 70000 6.4174 0.6295 0.5975
0.3763 8.34 75000 6.1405 0.6426 0.6025
0.3719 8.89 80000 6.4745 0.6346 0.6024
0.3428 9.45 85000 5.9964 0.6389 0.6030
0.3288 10.0 90000 6.3213 0.6335 0.5988
0.3192 10.56 95000 6.4269 0.6321 0.5937
0.2934 11.12 100000 6.3224 0.6392 0.6039
0.3054 11.67 105000 6.4531 0.6326 0.5989
0.2841 12.23 110000 6.2824 0.6360 0.6075
0.2915 12.78 115000 6.1928 0.6391 0.6039
0.274 13.34 120000 6.1931 0.6401 0.6030
0.2776 13.9 125000 6.2524 0.6384 0.6045
0.2724 14.45 130000 5.9260 0.6456 0.6090
0.2602 15.01 135000 6.3508 0.6347 0.6052
0.2627 15.56 140000 6.1761 0.6421 0.6074
0.2496 16.12 145000 6.1398 0.6391 0.6111
0.253 16.67 150000 6.2431 0.6328 0.6014
0.2451 17.23 155000 6.1746 0.6378 0.6048
0.2369 17.79 160000 6.0915 0.6435 0.6103
0.2332 18.34 165000 6.2138 0.6376 0.6071
0.2325 18.9 170000 6.1176 0.6433 0.6073
0.2239 19.45 175000 5.9650 0.6419 0.6068
0.2229 20.01 180000 6.2025 0.6395 0.6072
0.2241 20.56 185000 6.0510 0.6418 0.6088
0.212 21.12 190000 5.9952 0.6438 0.6100
0.218 21.68 195000 6.2810 0.6376 0.6073
0.212 22.23 200000 5.9274 0.6454 0.6076
0.2091 22.79 205000 6.1958 0.6367 0.6071
0.2091 23.34 210000 5.9633 0.6463 0.6153
0.2065 23.9 215000 6.0132 0.6458 0.6116
0.2048 24.46 220000 5.9809 0.6451 0.6132
0.1996 25.01 225000 6.1021 0.6389 0.6063
0.1966 25.57 230000 5.9612 0.6448 0.6140
0.1964 26.12 235000 6.0715 0.6434 0.6134
0.1971 26.68 240000 6.0237 0.6442 0.6127
0.1893 27.23 245000 6.0213 0.6418 0.6086
0.1891 27.79 250000 6.0386 0.6445 0.6127
0.1942 28.35 255000 6.0043 0.6428 0.6099
0.1966 28.9 260000 5.9983 0.6440 0.6130
0.1883 29.46 265000 6.0186 0.6461 0.6134

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3