metadata
license: openrail
datasets:
- lucasmccabe-lmi/CodeAlpaca-20k
language:
- en
library_name: adapter-transformers
Model Card for opt350m-codealpaca20k
Model Description
A simple opt350m model trained on the CodeAlpaca dataset using quantization and Progressive Embedding Fine-Tuning (PEFT). It's designed to understand and generate code-related responses based on the prompts provided.
Model Architecture
- Base Model:
facebook/opt-350m
- Fine-tuning: Progressive Embedding Fine-Tuning (PEFT)
Training Data
The model was trained on the lucasmccabe-lmi/CodeAlpaca-20k
dataset. This dataset contains code-related prompts and their corresponding outputs.
Training Procedure
Quantization Configuration:
- Quantization Type: 4-bit
- Compute Dtype: float16
- Double Quant: Enabled
PEFT Configuration:
- Lora Alpha: 16
- Lora Dropout: 0.5
- Bias: None
- Task Type: CAUSAL_LM
- Target Modules: q_proj, v_proj, k_proj
Training Arguments:
- Output Directory:
./results
- Batch Size: 4 (per device)
- Gradient Accumulation Steps: 2
- Number of Epochs: 10
- Optimizer:
adamw_bnb_8bit
- Learning Rate: 2e-5
- Max Gradient Norm: 0.3
- Warmup Ratio: 0.03
- Learning Rate Scheduler: Cosine
- Logging Steps: 10
- Save Steps: 250
- FP16 Precision: Enabled
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/opt350m")
model = AutoModelForCausalLM.from_pretrained("harpomaxx/opt350m-codealpaca20k)
prompt = "### Question: [Your code-related question here]"
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded_output)
License
OpenRail