harataku commited on
Commit
edc0eef
·
verified ·
1 Parent(s): f4d4a9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +161 -199
README.md CHANGED
@@ -1,199 +1,161 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # llm-jp-3-13b-finetune 使用方法ガイド
2
+
3
+ ## モデル概要
4
+ このモデルは、llm-jp/llm-jp-3-13bをベースにLoRA (Parameter-Efficient Fine-Tuning)で学習された公開モデルです。
5
+
6
+ ## 必要な環境
7
+ - Python 3.10以上
8
+ - CUDA対応GPU(推奨)
9
+ - 必要なライブラリ:
10
+ - transformers
11
+ - bitsandbytes
12
+ - accelerate
13
+ - torch
14
+ - peft
15
+
16
+ ## インストール手順
17
+
18
+ ```bash
19
+ # 必要なライブラリのインストール
20
+ pip install -U pip
21
+ pip install -U transformers
22
+ pip install -U bitsandbytes
23
+ pip install -U accelerate
24
+ pip install -U peft
25
+ pip install -U torch
26
+ ```
27
+
28
+ ## 基本的な使用方法
29
+
30
+ ### 1. シンプルな使用方法
31
+ ```python
32
+ from transformers import pipeline
33
+
34
+ # パイプラインの作成
35
+ generator = pipeline(
36
+ "text-generation",
37
+ model="harataku/llm-jp-3-13b-finetune",
38
+ device=0 # GPU使用
39
+ )
40
+
41
+ # テキスト生成
42
+ prompt = """### 指示
43
+ 好きな食べ物について教えてください
44
+ ### 回答
45
+ """
46
+ response = generator(prompt, max_length=200, num_return_sequences=1)
47
+ print(response[0]['generated_text'])
48
+ ```
49
+
50
+ ### 2. 詳細な設定による使用方法
51
+ ```python
52
+ from transformers import (
53
+ AutoModelForCausalLM,
54
+ AutoTokenizer,
55
+ BitsAndBytesConfig
56
+ )
57
+ import torch
58
+
59
+ # モデルの設定
60
+ model_id = "harataku/llm-jp-3-13b-finetune"
61
+
62
+ # 量子化の設定
63
+ bnb_config = BitsAndBytesConfig(
64
+ load_in_4bit=True,
65
+ bnb_4bit_quant_type="nf4",
66
+ bnb_4bit_compute_dtype=torch.bfloat16,
67
+ )
68
+
69
+ # モデルとトークナイザーの読み込み
70
+ model = AutoModelForCausalLM.from_pretrained(
71
+ model_id,
72
+ quantization_config=bnb_config,
73
+ device_map="auto"
74
+ )
75
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
76
+
77
+ # 推論用の関数
78
+ def generate_response(input_text):
79
+ prompt = f"""### 指示
80
+ {input_text}
81
+ ### 回答
82
+ """
83
+
84
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
85
+ attention_mask = torch.ones_like(tokenized_input)
86
+
87
+ with torch.no_grad():
88
+ outputs = model.generate(
89
+ tokenized_input,
90
+ attention_mask=attention_mask,
91
+ max_new_tokens=100,
92
+ do_sample=False,
93
+ repetition_penalty=1.2,
94
+ pad_token_id=tokenizer.eos_token_id
95
+ )[0]
96
+
97
+ response = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
98
+ return response
99
+
100
+ # 使用例
101
+ input_text = "好きな食べ物について教えてください"
102
+ response = generate_response(input_text)
103
+ print(response)
104
+ ```
105
+
106
+ ## パラメータの説明
107
+
108
+ ### モデル生成時のパラメータ
109
+ - `max_new_tokens`: 生成する最大トークン数(デフォルト: 100)
110
+ - `do_sample`: サンプリングを行うかどうか(デフォルト: False)
111
+ - `repetition_penalty`: 繰り返しを抑制するためのペナルティ(デフォルト: 1.2)
112
+
113
+ ### 入力フォーマット
114
+ 入力は以下の形式で行います:
115
+ ```
116
+ ### 指示
117
+ [入力テキスト]
118
+ ### 回答
119
+ ```
120
+
121
+ ## トラブルシューティング
122
+
123
+ 1. メモリエラーが発生する場合:
124
+ ```python
125
+ # より少ないメモリ使用量の設定
126
+ bnb_config = BitsAndBytesConfig(
127
+ load_in_4bit=True,
128
+ bnb_4bit_quant_type="nf4",
129
+ bnb_4bit_compute_dtype=torch.float16 # bfloat16からfloat16に変更
130
+ )
131
+ ```
132
+
133
+ 2. GPUが利用できない場合:
134
+ ```python
135
+ # CPUでの実行設定
136
+ model = AutoModelForCausalLM.from_pretrained(
137
+ model_id,
138
+ device_map="cpu",
139
+ low_cpu_mem_usage=True
140
+ )
141
+ ```
142
+
143
+ ## 注意事項
144
+ - 4bit量子化を使用しているため、メモリ使用量は効率的ですが、推論速度とのトレードオフがあります
145
+ - GPU環境での実行を推奨します
146
+ - 長い入力テキストの場合は、`max_new_tokens`の値を適宜調整してください
147
+
148
+ ## ライセンス
149
+ 本モデルはベースモデル(llm-jp/llm-jp-3-13b)のライセンスを継承しています。また、学習データとして使用したichikara-instructionデータセットのライセンス(CC-BY-NC-SA)も適用されます。
150
+
151
+ ## 引用
152
+ 学習データについて:
153
+ ```
154
+ 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎.
155
+ ichikara-instruction: LLMのための日本語インストラクションデータの構築.
156
+ 言語処理学会第30回年次大会(2024)
157
+ ```
158
+
159
+ ## 更新履歴
160
+ - 2024/03/XX: モデルをpublic設定に変更
161
+ - 2024/03/XX: READMEを更新し、より簡単な使用方法を追加