metadata
library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Model_analisis_sentimen
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: indonlu
type: indonlu
config: smsa
split: validation
args: smsa
metrics:
- name: Accuracy
type: accuracy
value: 0.9412698412698413
- name: Precision
type: precision
value: 0.9167407809931684
- name: Recall
type: recall
value: 0.9068353459620502
- name: F1
type: f1
value: 0.9115530488925131
Model_analisis_sentimen
This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the indonlu dataset. It achieves the following results on the evaluation set:
- Loss: 0.4175
- Accuracy: 0.9413
- Precision: 0.9167
- Recall: 0.9068
- F1: 0.9116
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1