|
--- |
|
language: |
|
- hi |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_16_0 |
|
- mms |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-common_voice-hi-mms-demo |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - HI |
|
type: common_voice_16_0 |
|
config: hi |
|
split: test |
|
args: 'Config: hi, Training split: train+validation, Eval split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.2516432655283731 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-common_voice-hi-mms-demo |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - HI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2672 |
|
- Wer: 0.2516 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 4.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 0.11 | 100 | 0.4487 | 0.3565 | |
|
| No log | 0.23 | 200 | 0.3544 | 0.3317 | |
|
| No log | 0.34 | 300 | 0.3693 | 0.3088 | |
|
| No log | 0.45 | 400 | 0.3404 | 0.3040 | |
|
| 1.5084 | 0.56 | 500 | 0.3346 | 0.2995 | |
|
| 1.5084 | 0.68 | 600 | 0.3411 | 0.2936 | |
|
| 1.5084 | 0.79 | 700 | 0.3175 | 0.2887 | |
|
| 1.5084 | 0.9 | 800 | 0.3159 | 0.2898 | |
|
| 1.5084 | 1.02 | 900 | 0.3139 | 0.3045 | |
|
| 0.3485 | 1.13 | 1000 | 0.3067 | 0.2958 | |
|
| 0.3485 | 1.24 | 1100 | 0.2969 | 0.2767 | |
|
| 0.3485 | 1.35 | 1200 | 0.2916 | 0.2714 | |
|
| 0.3485 | 1.47 | 1300 | 0.2893 | 0.2663 | |
|
| 0.3485 | 1.58 | 1400 | 0.3183 | 0.2985 | |
|
| 0.3152 | 1.69 | 1500 | 0.2961 | 0.2688 | |
|
| 0.3152 | 1.81 | 1600 | 0.2848 | 0.2665 | |
|
| 0.3152 | 1.92 | 1700 | 0.2844 | 0.2656 | |
|
| 0.3152 | 2.03 | 1800 | 0.2855 | 0.2707 | |
|
| 0.3152 | 2.14 | 1900 | 0.2887 | 0.2686 | |
|
| 0.3058 | 2.26 | 2000 | 0.2858 | 0.2657 | |
|
| 0.3058 | 2.37 | 2100 | 0.2814 | 0.2629 | |
|
| 0.3058 | 2.48 | 2200 | 0.2809 | 0.2633 | |
|
| 0.3058 | 2.6 | 2300 | 0.2779 | 0.2613 | |
|
| 0.3058 | 2.71 | 2400 | 0.2745 | 0.2581 | |
|
| 0.2861 | 2.82 | 2500 | 0.2769 | 0.2618 | |
|
| 0.2861 | 2.93 | 2600 | 0.2742 | 0.2576 | |
|
| 0.2861 | 3.05 | 2700 | 0.2730 | 0.2575 | |
|
| 0.2861 | 3.16 | 2800 | 0.2727 | 0.2564 | |
|
| 0.2861 | 3.27 | 2900 | 0.2726 | 0.2563 | |
|
| 0.2839 | 3.39 | 3000 | 0.2713 | 0.2576 | |
|
| 0.2839 | 3.5 | 3100 | 0.2690 | 0.2537 | |
|
| 0.2839 | 3.61 | 3200 | 0.2706 | 0.2540 | |
|
| 0.2839 | 3.72 | 3300 | 0.2687 | 0.2542 | |
|
| 0.2839 | 3.84 | 3400 | 0.2671 | 0.2521 | |
|
| 0.2706 | 3.95 | 3500 | 0.2673 | 0.2522 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|