breeze-dsw-tiny-id / README.md
hanasim's picture
End of training
c97c4c6 verified
|
raw
history blame
2.18 kB
metadata
language:
  - id
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Breeze DSW Indonesian - tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 id
          type: mozilla-foundation/common_voice_16_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 45.243352654338025

Breeze DSW Indonesian - tiny

This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_16_0 id dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7109
  • Wer: 45.2434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.99 0.1 100 0.8486 54.1724
0.7896 1.04 200 0.7578 48.3393
0.4164 1.14 300 0.7388 49.2594
0.5456 2.09 400 0.7178 46.1266
0.476 3.03 500 0.7109 45.2434

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0