hamedkhaledi
commited on
Commit
·
d5e53ea
1
Parent(s):
e5868c3
Update model
Browse files- loss.tsv +6 -26
- pytorch_model.bin +2 -2
- training.log +146 -417
loss.tsv
CHANGED
@@ -1,26 +1,6 @@
|
|
1 |
-
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
-
1
|
3 |
-
2
|
4 |
-
3
|
5 |
-
4
|
6 |
-
5
|
7 |
-
6 02:20:30 0 0.1000 0.13162334187794475
|
8 |
-
7 02:22:22 0 0.1000 0.1255392909416602
|
9 |
-
8 02:24:13 0 0.1000 0.12040610092126014
|
10 |
-
9 02:26:05 0 0.1000 0.11533507664751852
|
11 |
-
10 02:27:57 0 0.1000 0.11078567317464759
|
12 |
-
11 02:29:48 0 0.1000 0.10792523206622268
|
13 |
-
12 02:31:37 0 0.1000 0.1049093249554238
|
14 |
-
13 02:33:28 0 0.1000 0.10211521327629115
|
15 |
-
14 02:35:25 0 0.1000 0.09980944747815595
|
16 |
-
15 02:37:14 0 0.1000 0.09761941123208488
|
17 |
-
16 02:39:06 0 0.1000 0.0953953896611401
|
18 |
-
17 02:40:58 0 0.1000 0.09268245582877983
|
19 |
-
18 02:42:50 0 0.1000 0.08999807655818322
|
20 |
-
19 02:44:41 0 0.1000 0.08849618166154223
|
21 |
-
20 02:46:32 0 0.1000 0.08828770131217435
|
22 |
-
21 02:48:21 0 0.1000 0.08494609398739676
|
23 |
-
22 02:50:11 0 0.1000 0.08349820143082182
|
24 |
-
23 02:52:02 0 0.1000 0.08202487858966351
|
25 |
-
24 02:53:52 0 0.1000 0.08095665230448137
|
26 |
-
25 02:55:42 0 0.1000 0.07815882924953178
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 16:21:08 0 0.1000 0.3021370332429696 0.1289350390434265 0.9601 0.9601 0.9601 0.9601
|
3 |
+
2 16:43:34 0 0.1000 0.19530593042842243 0.10149012506008148 0.9708 0.9708 0.9708 0.9708
|
4 |
+
3 17:05:58 0 0.1000 0.16937352967357722 0.09684865176677704 0.9731 0.9731 0.9731 0.9731
|
5 |
+
4 17:28:23 0 0.1000 0.15777116446677278 0.09011354297399521 0.9744 0.9744 0.9744 0.9744
|
6 |
+
5 17:50:33 0 0.1000 0.14917361768721923 0.08973350375890732 0.9746 0.9746 0.9746 0.9746
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:155e918dac8cac5257ea9bee3655c25d69c1f296303e8933004b62a255e1b94b
|
3 |
+
size 415543931
|
training.log
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
2022-08-07
|
2 |
-
2022-08-07
|
3 |
(embeddings): StackedEmbeddings(
|
4 |
-
(list_embedding_0): WordEmbeddings(
|
5 |
-
'fa'
|
6 |
-
(embedding): Embedding(56850, 300)
|
7 |
-
)
|
8 |
(list_embedding_1): FlairEmbeddings(
|
9 |
(lm): LanguageModel(
|
10 |
(drop): Dropout(p=0.1, inplace=False)
|
@@ -24,423 +21,155 @@
|
|
24 |
)
|
25 |
(word_dropout): WordDropout(p=0.05)
|
26 |
(locked_dropout): LockedDropout(p=0.5)
|
27 |
-
(
|
28 |
-
(
|
29 |
-
(
|
|
|
|
|
|
|
30 |
)"
|
31 |
-
2022-08-07
|
32 |
-
2022-08-07
|
33 |
-
2022-08-07
|
34 |
-
2022-08-07
|
35 |
-
2022-08-07
|
36 |
-
2022-08-07
|
37 |
-
2022-08-07
|
38 |
-
2022-08-07
|
39 |
-
2022-08-07
|
40 |
-
2022-08-07
|
41 |
-
2022-08-07
|
42 |
-
2022-08-07
|
43 |
-
2022-08-07
|
44 |
-
2022-08-07
|
45 |
-
2022-08-07
|
46 |
-
2022-08-07
|
47 |
-
2022-08-07
|
48 |
-
2022-08-07
|
49 |
-
2022-08-07
|
50 |
-
2022-08-07 02:
|
51 |
-
2022-08-07
|
52 |
-
2022-08-07
|
53 |
-
2022-08-07
|
54 |
-
2022-08-07
|
55 |
-
2022-08-07
|
56 |
-
2022-08-07
|
57 |
-
2022-08-07
|
58 |
-
2022-08-07
|
59 |
-
2022-08-07
|
60 |
-
2022-08-07
|
61 |
-
2022-08-07
|
62 |
-
2022-08-07
|
63 |
-
2022-08-07
|
64 |
-
2022-08-07
|
65 |
-
2022-08-07
|
66 |
-
2022-08-07
|
67 |
-
2022-08-07
|
68 |
-
2022-08-07
|
69 |
-
2022-08-07
|
70 |
-
2022-08-07
|
71 |
-
2022-08-07
|
72 |
-
2022-08-07
|
73 |
-
2022-08-07
|
74 |
-
2022-08-07
|
75 |
-
2022-08-07
|
76 |
-
2022-08-07
|
77 |
-
2022-08-07
|
78 |
-
2022-08-07
|
79 |
-
2022-08-07
|
80 |
-
2022-08-07
|
81 |
-
2022-08-07
|
82 |
-
2022-08-07
|
83 |
-
2022-08-07
|
84 |
-
2022-08-07
|
85 |
-
2022-08-07
|
86 |
-
2022-08-07
|
87 |
-
2022-08-07
|
88 |
-
2022-08-07
|
89 |
-
2022-08-07
|
90 |
-
2022-08-07
|
91 |
-
2022-08-07
|
92 |
-
2022-08-07
|
93 |
-
2022-08-07
|
94 |
-
2022-08-07
|
95 |
-
2022-08-07
|
96 |
-
2022-08-07
|
97 |
-
2022-08-07
|
98 |
-
2022-08-07
|
99 |
-
2022-08-07
|
100 |
-
2022-08-07
|
101 |
-
2022-08-07
|
102 |
-
2022-08-07
|
103 |
-
2022-08-07
|
104 |
-
2022-08-07
|
105 |
-
2022-08-07
|
106 |
-
2022-08-07
|
107 |
-
2022-08-07
|
108 |
-
2022-08-07
|
109 |
-
2022-08-07
|
110 |
-
2022-08-07
|
111 |
-
2022-08-07
|
112 |
-
2022-08-07
|
113 |
-
2022-08-07
|
114 |
-
2022-08-07
|
115 |
-
2022-08-07
|
116 |
-
2022-08-07
|
117 |
-
2022-08-07
|
118 |
-
2022-08-07
|
119 |
-
2022-08-07
|
120 |
-
2022-08-07
|
121 |
-
2022-08-07
|
122 |
-
2022-08-07
|
123 |
-
2022-08-07
|
124 |
-
2022-08-07
|
125 |
-
2022-08-07
|
126 |
-
2022-08-07
|
127 |
-
2022-08-07
|
128 |
-
2022-08-07
|
129 |
-
2022-08-07
|
130 |
-
2022-08-07
|
131 |
-
2022-08-07
|
132 |
-
2022-08-07
|
133 |
-
2022-08-07 02:20:30,884 ----------------------------------------------------------------------------------------------------
|
134 |
-
2022-08-07 02:20:41,904 epoch 7 - iter 337/3375 - loss 0.12469525 - samples/sec: 245.31 - lr: 0.100000
|
135 |
-
2022-08-07 02:20:53,093 epoch 7 - iter 674/3375 - loss 0.12698511 - samples/sec: 241.58 - lr: 0.100000
|
136 |
-
2022-08-07 02:21:04,011 epoch 7 - iter 1011/3375 - loss 0.12657046 - samples/sec: 247.61 - lr: 0.100000
|
137 |
-
2022-08-07 02:21:15,101 epoch 7 - iter 1348/3375 - loss 0.12672328 - samples/sec: 243.75 - lr: 0.100000
|
138 |
-
2022-08-07 02:21:26,075 epoch 7 - iter 1685/3375 - loss 0.12594031 - samples/sec: 246.31 - lr: 0.100000
|
139 |
-
2022-08-07 02:21:37,003 epoch 7 - iter 2022/3375 - loss 0.12642873 - samples/sec: 247.30 - lr: 0.100000
|
140 |
-
2022-08-07 02:21:48,160 epoch 7 - iter 2359/3375 - loss 0.12583060 - samples/sec: 242.39 - lr: 0.100000
|
141 |
-
2022-08-07 02:21:59,410 epoch 7 - iter 2696/3375 - loss 0.12552168 - samples/sec: 240.33 - lr: 0.100000
|
142 |
-
2022-08-07 02:22:10,826 epoch 7 - iter 3033/3375 - loss 0.12531533 - samples/sec: 236.80 - lr: 0.100000
|
143 |
-
2022-08-07 02:22:22,230 epoch 7 - iter 3370/3375 - loss 0.12554230 - samples/sec: 237.02 - lr: 0.100000
|
144 |
-
2022-08-07 02:22:22,372 ----------------------------------------------------------------------------------------------------
|
145 |
-
2022-08-07 02:22:22,372 EPOCH 7 done: loss 0.1255 - lr 0.100000
|
146 |
-
2022-08-07 02:22:22,372 BAD EPOCHS (no improvement): 0
|
147 |
-
2022-08-07 02:22:22,372 ----------------------------------------------------------------------------------------------------
|
148 |
-
2022-08-07 02:22:33,973 epoch 8 - iter 337/3375 - loss 0.11902872 - samples/sec: 233.03 - lr: 0.100000
|
149 |
-
2022-08-07 02:22:45,079 epoch 8 - iter 674/3375 - loss 0.11995484 - samples/sec: 243.37 - lr: 0.100000
|
150 |
-
2022-08-07 02:22:56,079 epoch 8 - iter 1011/3375 - loss 0.12447185 - samples/sec: 245.73 - lr: 0.100000
|
151 |
-
2022-08-07 02:23:07,005 epoch 8 - iter 1348/3375 - loss 0.12186016 - samples/sec: 247.36 - lr: 0.100000
|
152 |
-
2022-08-07 02:23:18,142 epoch 8 - iter 1685/3375 - loss 0.12180914 - samples/sec: 242.72 - lr: 0.100000
|
153 |
-
2022-08-07 02:23:28,937 epoch 8 - iter 2022/3375 - loss 0.12178735 - samples/sec: 250.35 - lr: 0.100000
|
154 |
-
2022-08-07 02:23:39,666 epoch 8 - iter 2359/3375 - loss 0.12100308 - samples/sec: 251.94 - lr: 0.100000
|
155 |
-
2022-08-07 02:23:50,288 epoch 8 - iter 2696/3375 - loss 0.12098102 - samples/sec: 254.43 - lr: 0.100000
|
156 |
-
2022-08-07 02:24:01,466 epoch 8 - iter 3033/3375 - loss 0.12091111 - samples/sec: 241.86 - lr: 0.100000
|
157 |
-
2022-08-07 02:24:12,938 epoch 8 - iter 3370/3375 - loss 0.12040225 - samples/sec: 235.63 - lr: 0.100000
|
158 |
-
2022-08-07 02:24:13,123 ----------------------------------------------------------------------------------------------------
|
159 |
-
2022-08-07 02:24:13,123 EPOCH 8 done: loss 0.1204 - lr 0.100000
|
160 |
-
2022-08-07 02:24:13,123 BAD EPOCHS (no improvement): 0
|
161 |
-
2022-08-07 02:24:13,124 ----------------------------------------------------------------------------------------------------
|
162 |
-
2022-08-07 02:24:24,336 epoch 9 - iter 337/3375 - loss 0.11290030 - samples/sec: 241.17 - lr: 0.100000
|
163 |
-
2022-08-07 02:24:35,714 epoch 9 - iter 674/3375 - loss 0.11346945 - samples/sec: 237.60 - lr: 0.100000
|
164 |
-
2022-08-07 02:24:47,141 epoch 9 - iter 1011/3375 - loss 0.11401393 - samples/sec: 236.57 - lr: 0.100000
|
165 |
-
2022-08-07 02:24:58,300 epoch 9 - iter 1348/3375 - loss 0.11366582 - samples/sec: 242.28 - lr: 0.100000
|
166 |
-
2022-08-07 02:25:09,198 epoch 9 - iter 1685/3375 - loss 0.11338815 - samples/sec: 248.01 - lr: 0.100000
|
167 |
-
2022-08-07 02:25:20,242 epoch 9 - iter 2022/3375 - loss 0.11280167 - samples/sec: 244.76 - lr: 0.100000
|
168 |
-
2022-08-07 02:25:31,000 epoch 9 - iter 2359/3375 - loss 0.11258570 - samples/sec: 251.27 - lr: 0.100000
|
169 |
-
2022-08-07 02:25:42,675 epoch 9 - iter 2696/3375 - loss 0.11476017 - samples/sec: 231.53 - lr: 0.100000
|
170 |
-
2022-08-07 02:25:54,127 epoch 9 - iter 3033/3375 - loss 0.11505920 - samples/sec: 236.04 - lr: 0.100000
|
171 |
-
2022-08-07 02:26:05,370 epoch 9 - iter 3370/3375 - loss 0.11528098 - samples/sec: 240.42 - lr: 0.100000
|
172 |
-
2022-08-07 02:26:05,525 ----------------------------------------------------------------------------------------------------
|
173 |
-
2022-08-07 02:26:05,525 EPOCH 9 done: loss 0.1153 - lr 0.100000
|
174 |
-
2022-08-07 02:26:05,525 BAD EPOCHS (no improvement): 0
|
175 |
-
2022-08-07 02:26:05,526 ----------------------------------------------------------------------------------------------------
|
176 |
-
2022-08-07 02:26:16,488 epoch 10 - iter 337/3375 - loss 0.10947414 - samples/sec: 246.62 - lr: 0.100000
|
177 |
-
2022-08-07 02:26:27,490 epoch 10 - iter 674/3375 - loss 0.11130776 - samples/sec: 245.64 - lr: 0.100000
|
178 |
-
2022-08-07 02:26:38,267 epoch 10 - iter 1011/3375 - loss 0.10972401 - samples/sec: 250.80 - lr: 0.100000
|
179 |
-
2022-08-07 02:26:49,354 epoch 10 - iter 1348/3375 - loss 0.10872413 - samples/sec: 243.79 - lr: 0.100000
|
180 |
-
2022-08-07 02:27:00,642 epoch 10 - iter 1685/3375 - loss 0.10961811 - samples/sec: 239.51 - lr: 0.100000
|
181 |
-
2022-08-07 02:27:11,930 epoch 10 - iter 2022/3375 - loss 0.11048220 - samples/sec: 239.46 - lr: 0.100000
|
182 |
-
2022-08-07 02:27:23,290 epoch 10 - iter 2359/3375 - loss 0.11060959 - samples/sec: 237.93 - lr: 0.100000
|
183 |
-
2022-08-07 02:27:34,821 epoch 10 - iter 2696/3375 - loss 0.11126846 - samples/sec: 234.45 - lr: 0.100000
|
184 |
-
2022-08-07 02:27:45,925 epoch 10 - iter 3033/3375 - loss 0.11105431 - samples/sec: 243.40 - lr: 0.100000
|
185 |
-
2022-08-07 02:27:57,172 epoch 10 - iter 3370/3375 - loss 0.11075921 - samples/sec: 240.37 - lr: 0.100000
|
186 |
-
2022-08-07 02:27:57,325 ----------------------------------------------------------------------------------------------------
|
187 |
-
2022-08-07 02:27:57,326 EPOCH 10 done: loss 0.1108 - lr 0.100000
|
188 |
-
2022-08-07 02:27:57,326 BAD EPOCHS (no improvement): 0
|
189 |
-
2022-08-07 02:27:57,326 ----------------------------------------------------------------------------------------------------
|
190 |
-
2022-08-07 02:28:08,659 epoch 11 - iter 337/3375 - loss 0.11076857 - samples/sec: 238.59 - lr: 0.100000
|
191 |
-
2022-08-07 02:28:19,669 epoch 11 - iter 674/3375 - loss 0.10651420 - samples/sec: 245.50 - lr: 0.100000
|
192 |
-
2022-08-07 02:28:30,995 epoch 11 - iter 1011/3375 - loss 0.10568094 - samples/sec: 238.65 - lr: 0.100000
|
193 |
-
2022-08-07 02:28:42,325 epoch 11 - iter 1348/3375 - loss 0.10905778 - samples/sec: 238.58 - lr: 0.100000
|
194 |
-
2022-08-07 02:28:53,100 epoch 11 - iter 1685/3375 - loss 0.10889745 - samples/sec: 250.81 - lr: 0.100000
|
195 |
-
2022-08-07 02:29:04,246 epoch 11 - iter 2022/3375 - loss 0.10882025 - samples/sec: 242.52 - lr: 0.100000
|
196 |
-
2022-08-07 02:29:15,152 epoch 11 - iter 2359/3375 - loss 0.10841426 - samples/sec: 247.86 - lr: 0.100000
|
197 |
-
2022-08-07 02:29:25,976 epoch 11 - iter 2696/3375 - loss 0.10880072 - samples/sec: 249.68 - lr: 0.100000
|
198 |
-
2022-08-07 02:29:37,366 epoch 11 - iter 3033/3375 - loss 0.10817257 - samples/sec: 237.30 - lr: 0.100000
|
199 |
-
2022-08-07 02:29:48,295 epoch 11 - iter 3370/3375 - loss 0.10790525 - samples/sec: 247.35 - lr: 0.100000
|
200 |
-
2022-08-07 02:29:48,441 ----------------------------------------------------------------------------------------------------
|
201 |
-
2022-08-07 02:29:48,441 EPOCH 11 done: loss 0.1079 - lr 0.100000
|
202 |
-
2022-08-07 02:29:48,441 BAD EPOCHS (no improvement): 0
|
203 |
-
2022-08-07 02:29:48,441 ----------------------------------------------------------------------------------------------------
|
204 |
-
2022-08-07 02:29:59,308 epoch 12 - iter 337/3375 - loss 0.10369701 - samples/sec: 248.76 - lr: 0.100000
|
205 |
-
2022-08-07 02:30:10,007 epoch 12 - iter 674/3375 - loss 0.10434462 - samples/sec: 252.65 - lr: 0.100000
|
206 |
-
2022-08-07 02:30:21,057 epoch 12 - iter 1011/3375 - loss 0.10301943 - samples/sec: 244.62 - lr: 0.100000
|
207 |
-
2022-08-07 02:30:31,884 epoch 12 - iter 1348/3375 - loss 0.10382269 - samples/sec: 249.63 - lr: 0.100000
|
208 |
-
2022-08-07 02:30:42,874 epoch 12 - iter 1685/3375 - loss 0.10299628 - samples/sec: 245.95 - lr: 0.100000
|
209 |
-
2022-08-07 02:30:53,851 epoch 12 - iter 2022/3375 - loss 0.10337040 - samples/sec: 246.26 - lr: 0.100000
|
210 |
-
2022-08-07 02:31:05,148 epoch 12 - iter 2359/3375 - loss 0.10373705 - samples/sec: 239.29 - lr: 0.100000
|
211 |
-
2022-08-07 02:31:16,303 epoch 12 - iter 2696/3375 - loss 0.10369999 - samples/sec: 242.29 - lr: 0.100000
|
212 |
-
2022-08-07 02:31:27,420 epoch 12 - iter 3033/3375 - loss 0.10361166 - samples/sec: 243.12 - lr: 0.100000
|
213 |
-
2022-08-07 02:31:37,704 epoch 12 - iter 3370/3375 - loss 0.10497405 - samples/sec: 262.83 - lr: 0.100000
|
214 |
-
2022-08-07 02:31:37,879 ----------------------------------------------------------------------------------------------------
|
215 |
-
2022-08-07 02:31:37,879 EPOCH 12 done: loss 0.1049 - lr 0.100000
|
216 |
-
2022-08-07 02:31:37,879 BAD EPOCHS (no improvement): 0
|
217 |
-
2022-08-07 02:31:37,879 ----------------------------------------------------------------------------------------------------
|
218 |
-
2022-08-07 02:31:49,490 epoch 13 - iter 337/3375 - loss 0.09771881 - samples/sec: 232.85 - lr: 0.100000
|
219 |
-
2022-08-07 02:32:00,601 epoch 13 - iter 674/3375 - loss 0.10062735 - samples/sec: 243.28 - lr: 0.100000
|
220 |
-
2022-08-07 02:32:11,552 epoch 13 - iter 1011/3375 - loss 0.10145832 - samples/sec: 246.84 - lr: 0.100000
|
221 |
-
2022-08-07 02:32:22,854 epoch 13 - iter 1348/3375 - loss 0.10164191 - samples/sec: 239.18 - lr: 0.100000
|
222 |
-
2022-08-07 02:32:34,078 epoch 13 - iter 1685/3375 - loss 0.10188188 - samples/sec: 240.81 - lr: 0.100000
|
223 |
-
2022-08-07 02:32:44,783 epoch 13 - iter 2022/3375 - loss 0.10230566 - samples/sec: 252.52 - lr: 0.100000
|
224 |
-
2022-08-07 02:32:55,846 epoch 13 - iter 2359/3375 - loss 0.10241548 - samples/sec: 244.33 - lr: 0.100000
|
225 |
-
2022-08-07 02:33:06,906 epoch 13 - iter 2696/3375 - loss 0.10240741 - samples/sec: 244.36 - lr: 0.100000
|
226 |
-
2022-08-07 02:33:17,449 epoch 13 - iter 3033/3375 - loss 0.10221738 - samples/sec: 256.34 - lr: 0.100000
|
227 |
-
2022-08-07 02:33:28,620 epoch 13 - iter 3370/3375 - loss 0.10209074 - samples/sec: 242.02 - lr: 0.100000
|
228 |
-
2022-08-07 02:33:28,766 ----------------------------------------------------------------------------------------------------
|
229 |
-
2022-08-07 02:33:28,766 EPOCH 13 done: loss 0.1021 - lr 0.100000
|
230 |
-
2022-08-07 02:33:28,766 BAD EPOCHS (no improvement): 0
|
231 |
-
2022-08-07 02:33:28,767 ----------------------------------------------------------------------------------------------------
|
232 |
-
2022-08-07 02:33:39,870 epoch 14 - iter 337/3375 - loss 0.09796604 - samples/sec: 243.51 - lr: 0.100000
|
233 |
-
2022-08-07 02:33:50,605 epoch 14 - iter 674/3375 - loss 0.09578931 - samples/sec: 251.77 - lr: 0.100000
|
234 |
-
2022-08-07 02:34:01,922 epoch 14 - iter 1011/3375 - loss 0.10195230 - samples/sec: 238.83 - lr: 0.100000
|
235 |
-
2022-08-07 02:34:13,388 epoch 14 - iter 1348/3375 - loss 0.10021155 - samples/sec: 235.77 - lr: 0.100000
|
236 |
-
2022-08-07 02:34:24,657 epoch 14 - iter 1685/3375 - loss 0.10102509 - samples/sec: 239.86 - lr: 0.100000
|
237 |
-
2022-08-07 02:34:35,142 epoch 14 - iter 2022/3375 - loss 0.10069196 - samples/sec: 257.74 - lr: 0.100000
|
238 |
-
2022-08-07 02:34:51,364 epoch 14 - iter 2359/3375 - loss 0.10041362 - samples/sec: 166.48 - lr: 0.100000
|
239 |
-
2022-08-07 02:35:02,495 epoch 14 - iter 2696/3375 - loss 0.10042230 - samples/sec: 242.85 - lr: 0.100000
|
240 |
-
2022-08-07 02:35:13,930 epoch 14 - iter 3033/3375 - loss 0.10023253 - samples/sec: 236.38 - lr: 0.100000
|
241 |
-
2022-08-07 02:35:25,051 epoch 14 - iter 3370/3375 - loss 0.09980998 - samples/sec: 243.05 - lr: 0.100000
|
242 |
-
2022-08-07 02:35:25,195 ----------------------------------------------------------------------------------------------------
|
243 |
-
2022-08-07 02:35:25,196 EPOCH 14 done: loss 0.0998 - lr 0.100000
|
244 |
-
2022-08-07 02:35:25,196 BAD EPOCHS (no improvement): 0
|
245 |
-
2022-08-07 02:35:25,196 ----------------------------------------------------------------------------------------------------
|
246 |
-
2022-08-07 02:35:35,802 epoch 15 - iter 337/3375 - loss 0.09670690 - samples/sec: 254.85 - lr: 0.100000
|
247 |
-
2022-08-07 02:35:46,996 epoch 15 - iter 674/3375 - loss 0.09431814 - samples/sec: 241.48 - lr: 0.100000
|
248 |
-
2022-08-07 02:35:57,960 epoch 15 - iter 1011/3375 - loss 0.09377145 - samples/sec: 246.49 - lr: 0.100000
|
249 |
-
2022-08-07 02:36:08,715 epoch 15 - iter 1348/3375 - loss 0.09622842 - samples/sec: 251.39 - lr: 0.100000
|
250 |
-
2022-08-07 02:36:19,780 epoch 15 - iter 1685/3375 - loss 0.09767520 - samples/sec: 244.31 - lr: 0.100000
|
251 |
-
2022-08-07 02:36:30,749 epoch 15 - iter 2022/3375 - loss 0.09692809 - samples/sec: 246.42 - lr: 0.100000
|
252 |
-
2022-08-07 02:36:41,823 epoch 15 - iter 2359/3375 - loss 0.09696816 - samples/sec: 244.10 - lr: 0.100000
|
253 |
-
2022-08-07 02:36:52,983 epoch 15 - iter 2696/3375 - loss 0.09684092 - samples/sec: 242.20 - lr: 0.100000
|
254 |
-
2022-08-07 02:37:03,518 epoch 15 - iter 3033/3375 - loss 0.09721969 - samples/sec: 256.55 - lr: 0.100000
|
255 |
-
2022-08-07 02:37:14,478 epoch 15 - iter 3370/3375 - loss 0.09766576 - samples/sec: 246.62 - lr: 0.100000
|
256 |
-
2022-08-07 02:37:14,634 ----------------------------------------------------------------------------------------------------
|
257 |
-
2022-08-07 02:37:14,635 EPOCH 15 done: loss 0.0976 - lr 0.100000
|
258 |
-
2022-08-07 02:37:14,635 BAD EPOCHS (no improvement): 0
|
259 |
-
2022-08-07 02:37:14,635 ----------------------------------------------------------------------------------------------------
|
260 |
-
2022-08-07 02:37:25,907 epoch 16 - iter 337/3375 - loss 0.09192433 - samples/sec: 239.84 - lr: 0.100000
|
261 |
-
2022-08-07 02:37:37,145 epoch 16 - iter 674/3375 - loss 0.09118151 - samples/sec: 240.51 - lr: 0.100000
|
262 |
-
2022-08-07 02:37:47,961 epoch 16 - iter 1011/3375 - loss 0.09133619 - samples/sec: 249.92 - lr: 0.100000
|
263 |
-
2022-08-07 02:37:59,246 epoch 16 - iter 1348/3375 - loss 0.09326501 - samples/sec: 239.52 - lr: 0.100000
|
264 |
-
2022-08-07 02:38:10,240 epoch 16 - iter 1685/3375 - loss 0.09328072 - samples/sec: 245.86 - lr: 0.100000
|
265 |
-
2022-08-07 02:38:21,330 epoch 16 - iter 2022/3375 - loss 0.09375121 - samples/sec: 243.74 - lr: 0.100000
|
266 |
-
2022-08-07 02:38:32,486 epoch 16 - iter 2359/3375 - loss 0.09445046 - samples/sec: 242.34 - lr: 0.100000
|
267 |
-
2022-08-07 02:38:43,896 epoch 16 - iter 2696/3375 - loss 0.09434421 - samples/sec: 236.94 - lr: 0.100000
|
268 |
-
2022-08-07 02:38:54,862 epoch 16 - iter 3033/3375 - loss 0.09403046 - samples/sec: 246.48 - lr: 0.100000
|
269 |
-
2022-08-07 02:39:06,183 epoch 16 - iter 3370/3375 - loss 0.09453781 - samples/sec: 238.83 - lr: 0.100000
|
270 |
-
2022-08-07 02:39:06,368 ----------------------------------------------------------------------------------------------------
|
271 |
-
2022-08-07 02:39:06,369 EPOCH 16 done: loss 0.0954 - lr 0.100000
|
272 |
-
2022-08-07 02:39:06,369 BAD EPOCHS (no improvement): 0
|
273 |
-
2022-08-07 02:39:06,370 ----------------------------------------------------------------------------------------------------
|
274 |
-
2022-08-07 02:39:17,685 epoch 17 - iter 337/3375 - loss 0.09065832 - samples/sec: 238.97 - lr: 0.100000
|
275 |
-
2022-08-07 02:39:28,532 epoch 17 - iter 674/3375 - loss 0.09074058 - samples/sec: 249.20 - lr: 0.100000
|
276 |
-
2022-08-07 02:39:39,813 epoch 17 - iter 1011/3375 - loss 0.09076218 - samples/sec: 239.62 - lr: 0.100000
|
277 |
-
2022-08-07 02:39:51,097 epoch 17 - iter 1348/3375 - loss 0.09114038 - samples/sec: 239.58 - lr: 0.100000
|
278 |
-
2022-08-07 02:40:02,140 epoch 17 - iter 1685/3375 - loss 0.09364976 - samples/sec: 244.81 - lr: 0.100000
|
279 |
-
2022-08-07 02:40:13,561 epoch 17 - iter 2022/3375 - loss 0.09295760 - samples/sec: 236.71 - lr: 0.100000
|
280 |
-
2022-08-07 02:40:24,964 epoch 17 - iter 2359/3375 - loss 0.09259855 - samples/sec: 237.08 - lr: 0.100000
|
281 |
-
2022-08-07 02:40:36,010 epoch 17 - iter 2696/3375 - loss 0.09252924 - samples/sec: 244.74 - lr: 0.100000
|
282 |
-
2022-08-07 02:40:47,006 epoch 17 - iter 3033/3375 - loss 0.09270205 - samples/sec: 245.80 - lr: 0.100000
|
283 |
-
2022-08-07 02:40:58,218 epoch 17 - iter 3370/3375 - loss 0.09268398 - samples/sec: 241.11 - lr: 0.100000
|
284 |
-
2022-08-07 02:40:58,391 ----------------------------------------------------------------------------------------------------
|
285 |
-
2022-08-07 02:40:58,391 EPOCH 17 done: loss 0.0927 - lr 0.100000
|
286 |
-
2022-08-07 02:40:58,391 BAD EPOCHS (no improvement): 0
|
287 |
-
2022-08-07 02:40:58,392 ----------------------------------------------------------------------------------------------------
|
288 |
-
2022-08-07 02:41:09,599 epoch 18 - iter 337/3375 - loss 0.09055744 - samples/sec: 241.22 - lr: 0.100000
|
289 |
-
2022-08-07 02:41:20,285 epoch 18 - iter 674/3375 - loss 0.08777919 - samples/sec: 252.94 - lr: 0.100000
|
290 |
-
2022-08-07 02:41:31,419 epoch 18 - iter 1011/3375 - loss 0.08653121 - samples/sec: 242.79 - lr: 0.100000
|
291 |
-
2022-08-07 02:41:42,739 epoch 18 - iter 1348/3375 - loss 0.08740157 - samples/sec: 238.86 - lr: 0.100000
|
292 |
-
2022-08-07 02:41:53,953 epoch 18 - iter 1685/3375 - loss 0.08793633 - samples/sec: 241.06 - lr: 0.100000
|
293 |
-
2022-08-07 02:42:04,883 epoch 18 - iter 2022/3375 - loss 0.08754013 - samples/sec: 247.32 - lr: 0.100000
|
294 |
-
2022-08-07 02:42:16,283 epoch 18 - iter 2359/3375 - loss 0.08808403 - samples/sec: 237.14 - lr: 0.100000
|
295 |
-
2022-08-07 02:42:27,434 epoch 18 - iter 2696/3375 - loss 0.08880355 - samples/sec: 242.41 - lr: 0.100000
|
296 |
-
2022-08-07 02:42:38,785 epoch 18 - iter 3033/3375 - loss 0.08953809 - samples/sec: 238.13 - lr: 0.100000
|
297 |
-
2022-08-07 02:42:50,287 epoch 18 - iter 3370/3375 - loss 0.08999968 - samples/sec: 235.01 - lr: 0.100000
|
298 |
-
2022-08-07 02:42:50,435 ----------------------------------------------------------------------------------------------------
|
299 |
-
2022-08-07 02:42:50,435 EPOCH 18 done: loss 0.0900 - lr 0.100000
|
300 |
-
2022-08-07 02:42:50,435 BAD EPOCHS (no improvement): 0
|
301 |
-
2022-08-07 02:42:50,436 ----------------------------------------------------------------------------------------------------
|
302 |
-
2022-08-07 02:43:01,650 epoch 19 - iter 337/3375 - loss 0.08691442 - samples/sec: 241.09 - lr: 0.100000
|
303 |
-
2022-08-07 02:43:12,726 epoch 19 - iter 674/3375 - loss 0.08776779 - samples/sec: 244.04 - lr: 0.100000
|
304 |
-
2022-08-07 02:43:23,627 epoch 19 - iter 1011/3375 - loss 0.08694620 - samples/sec: 247.98 - lr: 0.100000
|
305 |
-
2022-08-07 02:43:34,831 epoch 19 - iter 1348/3375 - loss 0.08641312 - samples/sec: 241.26 - lr: 0.100000
|
306 |
-
2022-08-07 02:43:46,256 epoch 19 - iter 1685/3375 - loss 0.08834346 - samples/sec: 236.64 - lr: 0.100000
|
307 |
-
2022-08-07 02:43:57,309 epoch 19 - iter 2022/3375 - loss 0.08773463 - samples/sec: 244.61 - lr: 0.100000
|
308 |
-
2022-08-07 02:44:08,660 epoch 19 - iter 2359/3375 - loss 0.08783827 - samples/sec: 238.15 - lr: 0.100000
|
309 |
-
2022-08-07 02:44:19,311 epoch 19 - iter 2696/3375 - loss 0.08811852 - samples/sec: 253.71 - lr: 0.100000
|
310 |
-
2022-08-07 02:44:30,362 epoch 19 - iter 3033/3375 - loss 0.08824350 - samples/sec: 244.57 - lr: 0.100000
|
311 |
-
2022-08-07 02:44:41,601 epoch 19 - iter 3370/3375 - loss 0.08849871 - samples/sec: 240.51 - lr: 0.100000
|
312 |
-
2022-08-07 02:44:41,783 ----------------------------------------------------------------------------------------------------
|
313 |
-
2022-08-07 02:44:41,783 EPOCH 19 done: loss 0.0885 - lr 0.100000
|
314 |
-
2022-08-07 02:44:41,783 BAD EPOCHS (no improvement): 0
|
315 |
-
2022-08-07 02:44:41,783 ----------------------------------------------------------------------------------------------------
|
316 |
-
2022-08-07 02:44:52,525 epoch 20 - iter 337/3375 - loss 0.09322885 - samples/sec: 251.66 - lr: 0.100000
|
317 |
-
2022-08-07 02:45:03,893 epoch 20 - iter 674/3375 - loss 0.08928904 - samples/sec: 237.84 - lr: 0.100000
|
318 |
-
2022-08-07 02:45:15,191 epoch 20 - iter 1011/3375 - loss 0.08975760 - samples/sec: 239.28 - lr: 0.100000
|
319 |
-
2022-08-07 02:45:26,425 epoch 20 - iter 1348/3375 - loss 0.08790189 - samples/sec: 240.63 - lr: 0.100000
|
320 |
-
2022-08-07 02:45:36,609 epoch 20 - iter 1685/3375 - loss 0.08815741 - samples/sec: 265.45 - lr: 0.100000
|
321 |
-
2022-08-07 02:45:47,682 epoch 20 - iter 2022/3375 - loss 0.08809693 - samples/sec: 244.16 - lr: 0.100000
|
322 |
-
2022-08-07 02:45:58,875 epoch 20 - iter 2359/3375 - loss 0.08818872 - samples/sec: 241.50 - lr: 0.100000
|
323 |
-
2022-08-07 02:46:10,105 epoch 20 - iter 2696/3375 - loss 0.08873562 - samples/sec: 240.71 - lr: 0.100000
|
324 |
-
2022-08-07 02:46:20,950 epoch 20 - iter 3033/3375 - loss 0.08879496 - samples/sec: 249.22 - lr: 0.100000
|
325 |
-
2022-08-07 02:46:32,158 epoch 20 - iter 3370/3375 - loss 0.08832716 - samples/sec: 241.18 - lr: 0.100000
|
326 |
-
2022-08-07 02:46:32,335 ----------------------------------------------------------------------------------------------------
|
327 |
-
2022-08-07 02:46:32,335 EPOCH 20 done: loss 0.0883 - lr 0.100000
|
328 |
-
2022-08-07 02:46:32,335 BAD EPOCHS (no improvement): 0
|
329 |
-
2022-08-07 02:46:32,335 ----------------------------------------------------------------------------------------------------
|
330 |
-
2022-08-07 02:46:43,375 epoch 21 - iter 337/3375 - loss 0.09213887 - samples/sec: 244.86 - lr: 0.100000
|
331 |
-
2022-08-07 02:46:54,478 epoch 21 - iter 674/3375 - loss 0.08900913 - samples/sec: 243.46 - lr: 0.100000
|
332 |
-
2022-08-07 02:47:05,301 epoch 21 - iter 1011/3375 - loss 0.08754593 - samples/sec: 249.76 - lr: 0.100000
|
333 |
-
2022-08-07 02:47:15,433 epoch 21 - iter 1348/3375 - loss 0.08629554 - samples/sec: 266.73 - lr: 0.100000
|
334 |
-
2022-08-07 02:47:26,262 epoch 21 - iter 1685/3375 - loss 0.08524342 - samples/sec: 249.61 - lr: 0.100000
|
335 |
-
2022-08-07 02:47:37,339 epoch 21 - iter 2022/3375 - loss 0.08503406 - samples/sec: 244.03 - lr: 0.100000
|
336 |
-
2022-08-07 02:47:48,120 epoch 21 - iter 2359/3375 - loss 0.08520712 - samples/sec: 250.70 - lr: 0.100000
|
337 |
-
2022-08-07 02:47:59,174 epoch 21 - iter 2696/3375 - loss 0.08494666 - samples/sec: 244.53 - lr: 0.100000
|
338 |
-
2022-08-07 02:48:09,988 epoch 21 - iter 3033/3375 - loss 0.08480265 - samples/sec: 249.92 - lr: 0.100000
|
339 |
-
2022-08-07 02:48:21,077 epoch 21 - iter 3370/3375 - loss 0.08495562 - samples/sec: 243.77 - lr: 0.100000
|
340 |
-
2022-08-07 02:48:21,260 ----------------------------------------------------------------------------------------------------
|
341 |
-
2022-08-07 02:48:21,260 EPOCH 21 done: loss 0.0849 - lr 0.100000
|
342 |
-
2022-08-07 02:48:21,260 BAD EPOCHS (no improvement): 0
|
343 |
-
2022-08-07 02:48:21,261 ----------------------------------------------------------------------------------------------------
|
344 |
-
2022-08-07 02:48:32,111 epoch 22 - iter 337/3375 - loss 0.08295893 - samples/sec: 249.16 - lr: 0.100000
|
345 |
-
2022-08-07 02:48:43,332 epoch 22 - iter 674/3375 - loss 0.08481991 - samples/sec: 240.82 - lr: 0.100000
|
346 |
-
2022-08-07 02:48:54,762 epoch 22 - iter 1011/3375 - loss 0.08570495 - samples/sec: 236.51 - lr: 0.100000
|
347 |
-
2022-08-07 02:49:05,835 epoch 22 - iter 1348/3375 - loss 0.08393526 - samples/sec: 244.10 - lr: 0.100000
|
348 |
-
2022-08-07 02:49:15,803 epoch 22 - iter 1685/3375 - loss 0.08354373 - samples/sec: 271.08 - lr: 0.100000
|
349 |
-
2022-08-07 02:49:26,536 epoch 22 - iter 2022/3375 - loss 0.08345868 - samples/sec: 251.91 - lr: 0.100000
|
350 |
-
2022-08-07 02:49:38,171 epoch 22 - iter 2359/3375 - loss 0.08348163 - samples/sec: 232.34 - lr: 0.100000
|
351 |
-
2022-08-07 02:49:49,576 epoch 22 - iter 2696/3375 - loss 0.08383154 - samples/sec: 237.03 - lr: 0.100000
|
352 |
-
2022-08-07 02:50:00,569 epoch 22 - iter 3033/3375 - loss 0.08343660 - samples/sec: 245.95 - lr: 0.100000
|
353 |
-
2022-08-07 02:50:11,702 epoch 22 - iter 3370/3375 - loss 0.08352162 - samples/sec: 242.80 - lr: 0.100000
|
354 |
-
2022-08-07 02:50:11,847 ----------------------------------------------------------------------------------------------------
|
355 |
-
2022-08-07 02:50:11,847 EPOCH 22 done: loss 0.0835 - lr 0.100000
|
356 |
-
2022-08-07 02:50:11,847 BAD EPOCHS (no improvement): 0
|
357 |
-
2022-08-07 02:50:11,847 ----------------------------------------------------------------------------------------------------
|
358 |
-
2022-08-07 02:50:22,990 epoch 23 - iter 337/3375 - loss 0.07887801 - samples/sec: 242.63 - lr: 0.100000
|
359 |
-
2022-08-07 02:50:34,284 epoch 23 - iter 674/3375 - loss 0.08322045 - samples/sec: 239.33 - lr: 0.100000
|
360 |
-
2022-08-07 02:50:45,593 epoch 23 - iter 1011/3375 - loss 0.08177573 - samples/sec: 239.05 - lr: 0.100000
|
361 |
-
2022-08-07 02:50:56,652 epoch 23 - iter 1348/3375 - loss 0.08159359 - samples/sec: 244.44 - lr: 0.100000
|
362 |
-
2022-08-07 02:51:07,155 epoch 23 - iter 1685/3375 - loss 0.08185351 - samples/sec: 257.37 - lr: 0.100000
|
363 |
-
2022-08-07 02:51:18,142 epoch 23 - iter 2022/3375 - loss 0.08216048 - samples/sec: 246.03 - lr: 0.100000
|
364 |
-
2022-08-07 02:51:28,880 epoch 23 - iter 2359/3375 - loss 0.08232311 - samples/sec: 251.72 - lr: 0.100000
|
365 |
-
2022-08-07 02:51:40,057 epoch 23 - iter 2696/3375 - loss 0.08129492 - samples/sec: 241.84 - lr: 0.100000
|
366 |
-
2022-08-07 02:51:50,922 epoch 23 - iter 3033/3375 - loss 0.08169562 - samples/sec: 248.76 - lr: 0.100000
|
367 |
-
2022-08-07 02:52:02,160 epoch 23 - iter 3370/3375 - loss 0.08205725 - samples/sec: 240.50 - lr: 0.100000
|
368 |
-
2022-08-07 02:52:02,323 ----------------------------------------------------------------------------------------------------
|
369 |
-
2022-08-07 02:52:02,323 EPOCH 23 done: loss 0.0820 - lr 0.100000
|
370 |
-
2022-08-07 02:52:02,324 BAD EPOCHS (no improvement): 0
|
371 |
-
2022-08-07 02:52:02,324 ----------------------------------------------------------------------------------------------------
|
372 |
-
2022-08-07 02:52:13,284 epoch 24 - iter 337/3375 - loss 0.07347428 - samples/sec: 246.66 - lr: 0.100000
|
373 |
-
2022-08-07 02:52:24,344 epoch 24 - iter 674/3375 - loss 0.07465337 - samples/sec: 244.38 - lr: 0.100000
|
374 |
-
2022-08-07 02:52:35,586 epoch 24 - iter 1011/3375 - loss 0.07715712 - samples/sec: 240.49 - lr: 0.100000
|
375 |
-
2022-08-07 02:52:46,455 epoch 24 - iter 1348/3375 - loss 0.07792351 - samples/sec: 248.67 - lr: 0.100000
|
376 |
-
2022-08-07 02:52:57,159 epoch 24 - iter 1685/3375 - loss 0.07863379 - samples/sec: 252.50 - lr: 0.100000
|
377 |
-
2022-08-07 02:53:08,499 epoch 24 - iter 2022/3375 - loss 0.07926591 - samples/sec: 238.36 - lr: 0.100000
|
378 |
-
2022-08-07 02:53:18,679 epoch 24 - iter 2359/3375 - loss 0.07936523 - samples/sec: 265.47 - lr: 0.100000
|
379 |
-
2022-08-07 02:53:29,858 epoch 24 - iter 2696/3375 - loss 0.08120908 - samples/sec: 241.78 - lr: 0.100000
|
380 |
-
2022-08-07 02:53:41,047 epoch 24 - iter 3033/3375 - loss 0.08128250 - samples/sec: 241.61 - lr: 0.100000
|
381 |
-
2022-08-07 02:53:52,019 epoch 24 - iter 3370/3375 - loss 0.08094103 - samples/sec: 246.36 - lr: 0.100000
|
382 |
-
2022-08-07 02:53:52,158 ----------------------------------------------------------------------------------------------------
|
383 |
-
2022-08-07 02:53:52,159 EPOCH 24 done: loss 0.0810 - lr 0.100000
|
384 |
-
2022-08-07 02:53:52,159 BAD EPOCHS (no improvement): 0
|
385 |
-
2022-08-07 02:53:52,159 ----------------------------------------------------------------------------------------------------
|
386 |
-
2022-08-07 02:54:03,354 epoch 25 - iter 337/3375 - loss 0.08139893 - samples/sec: 241.47 - lr: 0.100000
|
387 |
-
2022-08-07 02:54:14,091 epoch 25 - iter 674/3375 - loss 0.07911841 - samples/sec: 251.69 - lr: 0.100000
|
388 |
-
2022-08-07 02:54:24,835 epoch 25 - iter 1011/3375 - loss 0.07860869 - samples/sec: 251.59 - lr: 0.100000
|
389 |
-
2022-08-07 02:54:35,909 epoch 25 - iter 1348/3375 - loss 0.07879774 - samples/sec: 244.08 - lr: 0.100000
|
390 |
-
2022-08-07 02:54:47,101 epoch 25 - iter 1685/3375 - loss 0.07789856 - samples/sec: 241.55 - lr: 0.100000
|
391 |
-
2022-08-07 02:54:58,083 epoch 25 - iter 2022/3375 - loss 0.07839394 - samples/sec: 246.13 - lr: 0.100000
|
392 |
-
2022-08-07 02:55:09,311 epoch 25 - iter 2359/3375 - loss 0.07843746 - samples/sec: 240.78 - lr: 0.100000
|
393 |
-
2022-08-07 02:55:20,397 epoch 25 - iter 2696/3375 - loss 0.07817246 - samples/sec: 243.82 - lr: 0.100000
|
394 |
-
2022-08-07 02:55:31,407 epoch 25 - iter 3033/3375 - loss 0.07825394 - samples/sec: 245.49 - lr: 0.100000
|
395 |
-
2022-08-07 02:55:42,519 epoch 25 - iter 3370/3375 - loss 0.07815000 - samples/sec: 243.29 - lr: 0.100000
|
396 |
-
2022-08-07 02:55:42,715 ----------------------------------------------------------------------------------------------------
|
397 |
-
2022-08-07 02:55:42,715 EPOCH 25 done: loss 0.0782 - lr 0.100000
|
398 |
-
2022-08-07 02:55:42,715 BAD EPOCHS (no improvement): 0
|
399 |
-
2022-08-07 02:55:43,803 ----------------------------------------------------------------------------------------------------
|
400 |
-
2022-08-07 02:55:43,803 Testing using last state of model ...
|
401 |
-
2022-08-07 02:56:08,461 Evaluating as a multi-label problem: False
|
402 |
-
2022-08-07 02:56:09,046 0.9703 0.9703 0.9703 0.9703
|
403 |
-
2022-08-07 02:56:09,046
|
404 |
Results:
|
405 |
-
- F-score (micro) 0.
|
406 |
-
- F-score (macro) 0.
|
407 |
-
- Accuracy 0.
|
408 |
|
409 |
By class:
|
410 |
precision recall f1-score support
|
411 |
|
412 |
-
N_SING 0.
|
413 |
-
P 0.
|
414 |
-
DELM 0.
|
415 |
-
ADJ 0.
|
416 |
-
CON 0.
|
417 |
-
N_PL 0.
|
418 |
-
V_PA 0.
|
419 |
-
V_PRS 0.
|
420 |
-
NUM 0.
|
421 |
-
PRO 0.
|
422 |
-
DET 0.
|
423 |
CLITIC 1.0000 1.0000 1.0000 1259
|
424 |
-
V_PP 0.
|
425 |
-
V_SUB 0.
|
426 |
-
ADV 0.
|
427 |
-
ADV_TIME 0.
|
428 |
-
V_AUX 0.
|
429 |
-
ADJ_SUP 0.9925 0.
|
430 |
-
ADJ_CMPR 0.
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
FW 0.
|
435 |
-
ADV_COMP 0.
|
436 |
-
ADV_LOC 0.
|
437 |
-
V_IMP 0.
|
438 |
-
PREV 0.
|
439 |
-
INT 0.
|
440 |
-
N_VOC 0.0000 0.0000 0.0000 0
|
441 |
|
442 |
-
|
443 |
-
macro avg 0.
|
444 |
-
weighted avg 0.
|
|
|
445 |
|
446 |
-
2022-08-07
|
|
|
1 |
+
2022-08-07 16:00:48,261 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-08-07 16:00:48,267 Model: "SequenceTagger(
|
3 |
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): WordEmbeddings('fa')
|
|
|
|
|
|
|
5 |
(list_embedding_1): FlairEmbeddings(
|
6 |
(lm): LanguageModel(
|
7 |
(drop): Dropout(p=0.1, inplace=False)
|
|
|
21 |
)
|
22 |
(word_dropout): WordDropout(p=0.05)
|
23 |
(locked_dropout): LockedDropout(p=0.5)
|
24 |
+
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
|
25 |
+
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
|
26 |
+
(linear): Linear(in_features=512, out_features=32, bias=True)
|
27 |
+
(beta): 1.0
|
28 |
+
(weights): None
|
29 |
+
(weight_tensor) None
|
30 |
)"
|
31 |
+
2022-08-07 16:00:48,272 ----------------------------------------------------------------------------------------------------
|
32 |
+
2022-08-07 16:00:48,276 Corpus: "Corpus: 24000 train + 3000 dev + 3000 test sentences"
|
33 |
+
2022-08-07 16:00:48,281 ----------------------------------------------------------------------------------------------------
|
34 |
+
2022-08-07 16:00:48,282 Parameters:
|
35 |
+
2022-08-07 16:00:48,285 - learning_rate: "0.1"
|
36 |
+
2022-08-07 16:00:48,289 - mini_batch_size: "8"
|
37 |
+
2022-08-07 16:00:48,293 - patience: "3"
|
38 |
+
2022-08-07 16:00:48,295 - anneal_factor: "0.5"
|
39 |
+
2022-08-07 16:00:48,296 - max_epochs: "5"
|
40 |
+
2022-08-07 16:00:48,297 - shuffle: "True"
|
41 |
+
2022-08-07 16:00:48,300 - train_with_dev: "False"
|
42 |
+
2022-08-07 16:00:48,301 - batch_growth_annealing: "False"
|
43 |
+
2022-08-07 16:00:48,303 ----------------------------------------------------------------------------------------------------
|
44 |
+
2022-08-07 16:00:48,306 Model training base path: "/content/drive/MyDrive/project/data/pos/model2"
|
45 |
+
2022-08-07 16:00:48,309 ----------------------------------------------------------------------------------------------------
|
46 |
+
2022-08-07 16:00:48,316 Device: cuda:0
|
47 |
+
2022-08-07 16:00:48,317 ----------------------------------------------------------------------------------------------------
|
48 |
+
2022-08-07 16:00:48,318 Embeddings storage mode: none
|
49 |
+
2022-08-07 16:00:48,337 ----------------------------------------------------------------------------------------------------
|
50 |
+
2022-08-07 16:02:01,728 epoch 1 - iter 300/3000 - loss 0.75227154 - samples/sec: 32.71 - lr: 0.100000
|
51 |
+
2022-08-07 16:03:44,240 epoch 1 - iter 600/3000 - loss 0.54616157 - samples/sec: 23.58 - lr: 0.100000
|
52 |
+
2022-08-07 16:05:07,940 epoch 1 - iter 900/3000 - loss 0.46940731 - samples/sec: 28.91 - lr: 0.100000
|
53 |
+
2022-08-07 16:06:48,542 epoch 1 - iter 1200/3000 - loss 0.41914715 - samples/sec: 24.03 - lr: 0.100000
|
54 |
+
2022-08-07 16:08:31,313 epoch 1 - iter 1500/3000 - loss 0.38015901 - samples/sec: 23.52 - lr: 0.100000
|
55 |
+
2022-08-07 16:10:05,508 epoch 1 - iter 1800/3000 - loss 0.35604709 - samples/sec: 25.67 - lr: 0.100000
|
56 |
+
2022-08-07 16:11:31,898 epoch 1 - iter 2100/3000 - loss 0.33691470 - samples/sec: 28.01 - lr: 0.100000
|
57 |
+
2022-08-07 16:13:00,338 epoch 1 - iter 2400/3000 - loss 0.32109903 - samples/sec: 27.35 - lr: 0.100000
|
58 |
+
2022-08-07 16:14:32,548 epoch 1 - iter 2700/3000 - loss 0.31528796 - samples/sec: 26.23 - lr: 0.100000
|
59 |
+
2022-08-07 16:16:09,123 epoch 1 - iter 3000/3000 - loss 0.30213703 - samples/sec: 25.03 - lr: 0.100000
|
60 |
+
2022-08-07 16:16:09,831 ----------------------------------------------------------------------------------------------------
|
61 |
+
2022-08-07 16:16:09,836 EPOCH 1 done: loss 0.3021 - lr 0.1000000
|
62 |
+
2022-08-07 16:21:08,895 DEV : loss 0.1289350390434265 - f1-score (micro avg) 0.9601
|
63 |
+
2022-08-07 16:21:08,937 BAD EPOCHS (no improvement): 0
|
64 |
+
2022-08-07 16:21:10,769 saving best model
|
65 |
+
2022-08-07 16:21:12,532 ----------------------------------------------------------------------------------------------------
|
66 |
+
2022-08-07 16:22:54,846 epoch 2 - iter 300/3000 - loss 0.21020090 - samples/sec: 23.46 - lr: 0.100000
|
67 |
+
2022-08-07 16:24:33,507 epoch 2 - iter 600/3000 - loss 0.20664426 - samples/sec: 24.50 - lr: 0.100000
|
68 |
+
2022-08-07 16:26:17,056 epoch 2 - iter 900/3000 - loss 0.20271364 - samples/sec: 23.33 - lr: 0.100000
|
69 |
+
2022-08-07 16:27:59,228 epoch 2 - iter 1200/3000 - loss 0.20055706 - samples/sec: 23.65 - lr: 0.100000
|
70 |
+
2022-08-07 16:29:39,722 epoch 2 - iter 1500/3000 - loss 0.19912427 - samples/sec: 24.05 - lr: 0.100000
|
71 |
+
2022-08-07 16:31:27,754 epoch 2 - iter 1800/3000 - loss 0.19760227 - samples/sec: 22.36 - lr: 0.100000
|
72 |
+
2022-08-07 16:33:12,162 epoch 2 - iter 2100/3000 - loss 0.19795635 - samples/sec: 23.14 - lr: 0.100000
|
73 |
+
2022-08-07 16:34:53,586 epoch 2 - iter 2400/3000 - loss 0.19672791 - samples/sec: 23.84 - lr: 0.100000
|
74 |
+
2022-08-07 16:36:42,505 epoch 2 - iter 2700/3000 - loss 0.19643492 - samples/sec: 22.19 - lr: 0.100000
|
75 |
+
2022-08-07 16:38:22,496 epoch 2 - iter 3000/3000 - loss 0.19530593 - samples/sec: 24.17 - lr: 0.100000
|
76 |
+
2022-08-07 16:38:23,157 ----------------------------------------------------------------------------------------------------
|
77 |
+
2022-08-07 16:38:23,162 EPOCH 2 done: loss 0.1953 - lr 0.1000000
|
78 |
+
2022-08-07 16:43:34,928 DEV : loss 0.10149012506008148 - f1-score (micro avg) 0.9708
|
79 |
+
2022-08-07 16:43:34,973 BAD EPOCHS (no improvement): 0
|
80 |
+
2022-08-07 16:43:36,767 saving best model
|
81 |
+
2022-08-07 16:43:38,486 ----------------------------------------------------------------------------------------------------
|
82 |
+
2022-08-07 16:45:23,089 epoch 3 - iter 300/3000 - loss 0.17774341 - samples/sec: 22.95 - lr: 0.100000
|
83 |
+
2022-08-07 16:47:08,214 epoch 3 - iter 600/3000 - loss 0.17596867 - samples/sec: 22.98 - lr: 0.100000
|
84 |
+
2022-08-07 16:48:50,711 epoch 3 - iter 900/3000 - loss 0.17436321 - samples/sec: 23.58 - lr: 0.100000
|
85 |
+
2022-08-07 16:50:35,039 epoch 3 - iter 1200/3000 - loss 0.17306311 - samples/sec: 23.16 - lr: 0.100000
|
86 |
+
2022-08-07 16:52:20,808 epoch 3 - iter 1500/3000 - loss 0.17261464 - samples/sec: 22.84 - lr: 0.100000
|
87 |
+
2022-08-07 16:54:02,750 epoch 3 - iter 1800/3000 - loss 0.17438407 - samples/sec: 23.71 - lr: 0.100000
|
88 |
+
2022-08-07 16:55:42,154 epoch 3 - iter 2100/3000 - loss 0.17363800 - samples/sec: 24.31 - lr: 0.100000
|
89 |
+
2022-08-07 16:57:21,978 epoch 3 - iter 2400/3000 - loss 0.17156485 - samples/sec: 24.21 - lr: 0.100000
|
90 |
+
2022-08-07 16:59:05,968 epoch 3 - iter 2700/3000 - loss 0.17042576 - samples/sec: 23.23 - lr: 0.100000
|
91 |
+
2022-08-07 17:00:46,166 epoch 3 - iter 3000/3000 - loss 0.16937353 - samples/sec: 24.12 - lr: 0.100000
|
92 |
+
2022-08-07 17:00:46,857 ----------------------------------------------------------------------------------------------------
|
93 |
+
2022-08-07 17:00:46,860 EPOCH 3 done: loss 0.1694 - lr 0.1000000
|
94 |
+
2022-08-07 17:05:58,652 DEV : loss 0.09684865176677704 - f1-score (micro avg) 0.9731
|
95 |
+
2022-08-07 17:05:58,703 BAD EPOCHS (no improvement): 0
|
96 |
+
2022-08-07 17:06:00,477 saving best model
|
97 |
+
2022-08-07 17:06:02,321 ----------------------------------------------------------------------------------------------------
|
98 |
+
2022-08-07 17:07:44,646 epoch 4 - iter 300/3000 - loss 0.16212096 - samples/sec: 23.46 - lr: 0.100000
|
99 |
+
2022-08-07 17:09:25,119 epoch 4 - iter 600/3000 - loss 0.15843816 - samples/sec: 24.05 - lr: 0.100000
|
100 |
+
2022-08-07 17:11:07,080 epoch 4 - iter 900/3000 - loss 0.15900626 - samples/sec: 23.70 - lr: 0.100000
|
101 |
+
2022-08-07 17:12:47,149 epoch 4 - iter 1200/3000 - loss 0.15764029 - samples/sec: 24.15 - lr: 0.100000
|
102 |
+
2022-08-07 17:14:33,737 epoch 4 - iter 1500/3000 - loss 0.16000098 - samples/sec: 22.66 - lr: 0.100000
|
103 |
+
2022-08-07 17:16:21,024 epoch 4 - iter 1800/3000 - loss 0.15931205 - samples/sec: 22.52 - lr: 0.100000
|
104 |
+
2022-08-07 17:18:01,785 epoch 4 - iter 2100/3000 - loss 0.15961928 - samples/sec: 23.99 - lr: 0.100000
|
105 |
+
2022-08-07 17:19:44,524 epoch 4 - iter 2400/3000 - loss 0.15845056 - samples/sec: 23.52 - lr: 0.100000
|
106 |
+
2022-08-07 17:21:27,429 epoch 4 - iter 2700/3000 - loss 0.15771950 - samples/sec: 23.49 - lr: 0.100000
|
107 |
+
2022-08-07 17:23:10,018 epoch 4 - iter 3000/3000 - loss 0.15777116 - samples/sec: 23.56 - lr: 0.100000
|
108 |
+
2022-08-07 17:23:10,788 ----------------------------------------------------------------------------------------------------
|
109 |
+
2022-08-07 17:23:10,794 EPOCH 4 done: loss 0.1578 - lr 0.1000000
|
110 |
+
2022-08-07 17:28:23,406 DEV : loss 0.09011354297399521 - f1-score (micro avg) 0.9744
|
111 |
+
2022-08-07 17:28:23,451 BAD EPOCHS (no improvement): 0
|
112 |
+
2022-08-07 17:28:25,515 saving best model
|
113 |
+
2022-08-07 17:28:27,346 ----------------------------------------------------------------------------------------------------
|
114 |
+
2022-08-07 17:30:06,455 epoch 5 - iter 300/3000 - loss 0.14466099 - samples/sec: 24.22 - lr: 0.100000
|
115 |
+
2022-08-07 17:31:44,351 epoch 5 - iter 600/3000 - loss 0.14401223 - samples/sec: 24.70 - lr: 0.100000
|
116 |
+
2022-08-07 17:33:27,083 epoch 5 - iter 900/3000 - loss 0.14768050 - samples/sec: 23.53 - lr: 0.100000
|
117 |
+
2022-08-07 17:35:07,577 epoch 5 - iter 1200/3000 - loss 0.14646819 - samples/sec: 24.05 - lr: 0.100000
|
118 |
+
2022-08-07 17:36:47,275 epoch 5 - iter 1500/3000 - loss 0.14604558 - samples/sec: 24.25 - lr: 0.100000
|
119 |
+
2022-08-07 17:38:24,129 epoch 5 - iter 1800/3000 - loss 0.14788483 - samples/sec: 24.96 - lr: 0.100000
|
120 |
+
2022-08-07 17:40:04,518 epoch 5 - iter 2100/3000 - loss 0.14695063 - samples/sec: 24.08 - lr: 0.100000
|
121 |
+
2022-08-07 17:41:51,964 epoch 5 - iter 2400/3000 - loss 0.14697433 - samples/sec: 22.49 - lr: 0.100000
|
122 |
+
2022-08-07 17:43:32,173 epoch 5 - iter 2700/3000 - loss 0.14745015 - samples/sec: 24.12 - lr: 0.100000
|
123 |
+
2022-08-07 17:45:17,557 epoch 5 - iter 3000/3000 - loss 0.14917362 - samples/sec: 22.93 - lr: 0.100000
|
124 |
+
2022-08-07 17:45:18,255 ----------------------------------------------------------------------------------------------------
|
125 |
+
2022-08-07 17:45:18,263 EPOCH 5 done: loss 0.1492 - lr 0.1000000
|
126 |
+
2022-08-07 17:50:33,128 DEV : loss 0.08973350375890732 - f1-score (micro avg) 0.9746
|
127 |
+
2022-08-07 17:50:33,176 BAD EPOCHS (no improvement): 0
|
128 |
+
2022-08-07 17:50:34,869 saving best model
|
129 |
+
2022-08-07 17:50:38,774 ----------------------------------------------------------------------------------------------------
|
130 |
+
2022-08-07 17:50:38,811 loading file /content/drive/MyDrive/project/data/pos/model2/best-model.pt
|
131 |
+
2022-08-07 17:55:05,420 0.9637 0.9637 0.9637 0.9637
|
132 |
+
2022-08-07 17:55:05,422
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
Results:
|
134 |
+
- F-score (micro) 0.9637
|
135 |
+
- F-score (macro) 0.8989
|
136 |
+
- Accuracy 0.9637
|
137 |
|
138 |
By class:
|
139 |
precision recall f1-score support
|
140 |
|
141 |
+
N_SING 0.9724 0.9521 0.9621 30553
|
142 |
+
P 0.9577 0.9919 0.9745 9951
|
143 |
+
DELM 0.9982 0.9996 0.9989 8122
|
144 |
+
ADJ 0.8768 0.9334 0.9042 7466
|
145 |
+
CON 0.9905 0.9786 0.9845 6823
|
146 |
+
N_PL 0.9719 0.9644 0.9681 5163
|
147 |
+
V_PA 0.9753 0.9756 0.9755 2873
|
148 |
+
V_PRS 0.9922 0.9852 0.9887 2841
|
149 |
+
NUM 0.9907 0.9982 0.9944 2232
|
150 |
+
PRO 0.9823 0.9349 0.9580 2258
|
151 |
+
DET 0.9429 0.9800 0.9611 1853
|
152 |
CLITIC 1.0000 1.0000 1.0000 1259
|
153 |
+
V_PP 0.9398 0.9836 0.9612 1158
|
154 |
+
V_SUB 0.9746 0.9680 0.9713 1031
|
155 |
+
ADV 0.8180 0.8375 0.8276 880
|
156 |
+
ADV_TIME 0.9238 0.9673 0.9451 489
|
157 |
+
V_AUX 0.9947 0.9947 0.9947 379
|
158 |
+
ADJ_SUP 0.9925 0.9815 0.9870 270
|
159 |
+
ADJ_CMPR 0.9372 0.9275 0.9323 193
|
160 |
+
ADV_NEG 0.9071 0.8523 0.8789 149
|
161 |
+
ADV_I 0.8345 0.8286 0.8315 140
|
162 |
+
ADJ_INO 0.8846 0.5476 0.6765 168
|
163 |
+
FW 0.8442 0.5285 0.6500 123
|
164 |
+
ADV_COMP 0.8072 0.8816 0.8428 76
|
165 |
+
ADV_LOC 0.9342 0.9726 0.9530 73
|
166 |
+
V_IMP 0.7826 0.6429 0.7059 56
|
167 |
+
PREV 0.8276 0.7500 0.7869 32
|
168 |
+
INT 0.8333 0.4167 0.5556 24
|
|
|
169 |
|
170 |
+
micro avg 0.9637 0.9637 0.9637 86635
|
171 |
+
macro avg 0.9245 0.8848 0.8989 86635
|
172 |
+
weighted avg 0.9643 0.9637 0.9637 86635
|
173 |
+
samples avg 0.9637 0.9637 0.9637 86635
|
174 |
|
175 |
+
2022-08-07 17:55:05,427 ----------------------------------------------------------------------------------------------------
|