haijian06 commited on
Commit
b3706d1
·
verified ·
1 Parent(s): 7154b58

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -3
README.md CHANGED
@@ -1,3 +1,95 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # haijian06/Yi-1.5-6B-Chat-Agent_sft
6
+
7
+ ## Overview
8
+
9
+ The `haijian06/Yi-1.5-6B-Chat-Agent_sft` model is an advanced conversational agent built upon the Yi-1.5-6B-Chat model. This model has been fine-tuned to enhance its capabilities in handling agent tasks and function calls, making it a versatile tool for a variety of applications.
10
+
11
+ ## Features
12
+
13
+ - **Improved Conversational Abilities**: Enhanced dialogue management and natural language understanding.
14
+ - **Function Call Capability**: Supports complex function call operations, making it suitable for automation and task handling.
15
+ - **High Performance**: Optimized for speed and accuracy in responses.
16
+
17
+ ## Installation
18
+
19
+ To use this model, you need to have Python and the necessary libraries installed. You can install the required dependencies using the following commands:
20
+
21
+ ```bash
22
+ pip install torch transformers
23
+ ```
24
+
25
+ ## Usage
26
+
27
+ Here is a basic example of how to use the `haijian06/Yi-1.5-6B-Chat-Agent_sft` model:
28
+
29
+ ```python
30
+ import torch
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+
33
+ # Load the model and tokenizer
34
+ model_name = "haijian06/Yi-1.5-6B-Chat-Agent_sft"
35
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
36
+ model = AutoModelForCausalLM.from_pretrained(model_name)
37
+
38
+ # Generate a response
39
+ input_text = "Hello, how can I assist you today?"
40
+ input_ids = tokenizer.encode(input_text, return_tensors='pt')
41
+
42
+ with torch.no_grad():
43
+ output = model.generate(input_ids, max_length=50)
44
+
45
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
46
+ print(response)
47
+ ```
48
+
49
+ ## Fine-Tuning
50
+
51
+ To fine-tune this model on your own dataset, follow these steps:
52
+
53
+ 1. Prepare your dataset in a suitable format.
54
+ 2. Use the `Trainer` class from the `transformers` library for training.
55
+
56
+ Example training script:
57
+
58
+ ```python
59
+ from transformers import Trainer, TrainingArguments
60
+
61
+ training_args = TrainingArguments(
62
+ output_dir='./results',
63
+ num_train_epochs=3,
64
+ per_device_train_batch_size=4,
65
+ per_device_eval_batch_size=4,
66
+ warmup_steps=500,
67
+ weight_decay=0.01,
68
+ logging_dir='./logs',
69
+ )
70
+
71
+ trainer = Trainer(
72
+ model=model,
73
+ args=training_args,
74
+ train_dataset=train_dataset,
75
+ eval_dataset=eval_dataset
76
+ )
77
+
78
+ trainer.train()
79
+ ```
80
+
81
+ ## Contributing
82
+
83
+ Contributions are welcome! Please fork this repository and submit a pull request with your improvements.
84
+
85
+ ## License
86
+
87
+ This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
88
+
89
+ ## Acknowledgements
90
+
91
+ This model is built upon the Yi-1.5-6B-Chat model. Special thanks to the developers and contributors of the original model.
92
+
93
+ ---
94
+
95
+ For more information, please visit our [GitHub repository](https://github.com/haijian06/Yi-1.5-6B-Chat-Agent_sft).