haielab commited on
Commit
a00009d
·
verified ·
1 Parent(s): 70a23a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -171
README.md CHANGED
@@ -1,199 +1,104 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation # causal-LM generation
4
+
5
+ language:
6
+ - en # natural language comments
7
+ - code # Lean proof language (= non-natural)
8
+ base_model: kfdong/STP_model_Lean_0320
9
+ datasets:
10
+ - stp_lean_theorems # rename if your JSON file differs
11
+ metrics:
12
+ - train_loss
13
+ - eval_loss
14
+ tags:
15
+ - lora
16
+ - peft
17
+ - causal-lm
18
+ - theorem-proving
19
+ - stp
20
+ - flash-attn-2
21
+ - bf16
22
+ new_version: v1.0
23
  ---
24
+ # STP-Lean-7B LoRA (v1)
25
 
26
+ LoRA rank-16 adapter fine-tuned from **`kfdong/STP_model_Lean_0320`** to assist with Lean theorem proving.
 
 
 
27
 
28
+ ---
29
 
30
  ## Model Details
31
 
32
+ | Field | Value |
33
+ |-------|-------|
34
+ | **Developed by** | HAIE Lab |
35
+ | **Model type** | 7 B-parameter causal-LM + LoRA r 16 α 32 |
36
+ | **Languages** | Lean syntax & English commentary |
37
+ | **Finetuned from** | `kfdong/STP_model_Lean_0320` |
38
+ | **Precision** | BF16 · Flash-Attention v2 |
39
+ | **Context length** | 1792 tokens |
40
+ | **Hardware** | 1 × H100 80 GB |
41
 
42
+ ---
 
 
 
 
 
 
43
 
44
+ ### Results (1 epoch, STP Lean corpus)
45
 
46
+ | Metric | Value |
47
+ |---------------------------|-------|
48
+ | Final **train loss** | **1.1593** |
49
+ | Final **train accuracy** | **0.713 token-level** |
50
+ | First-step loss (warm-up) | 1.6084 |
51
+ | Tokens processed | 168 856 138 |
52
+ | Grad-norm (final) | 0.265 |
53
 
54
+ ---
 
 
55
 
56
  ## Uses
57
 
58
+ ### Direct Use
59
+ Interactive Lean-proof suggestions, theorem exploration, education.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ ### Downstream Use
62
+ Research on automated theorem proving.
63
 
64
+ ### Out-of-Scope
65
+ Open-domain advice, legal/medical claims, guaranteed proof correctness.
66
 
67
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ ## Bias, Risks & Limitations
70
+ Model may hallucinate or output invalid Lean code; inherits errors in the STP dataset.
71
 
72
+ ---
73
 
74
+ ## How to Get Started
75
 
76
+ ```python
77
+ from transformers import AutoTokenizer, AutoModelForCausalLM
78
 
79
+ model_id = "haielab/STP_model_Lean_0320-conjecture-base-FineTune-new-config"
80
 
81
+ # 1️⃣ Tokenizer ─ leave default right padding for STP
82
+ tok = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
83
+ tok.pad_token = tok.eos_token # STP uses </s> as PAD
84
 
85
+ # 2️⃣ Load base-plus-LoRA adapter on GPU (BF16)
86
+ model = AutoModelForCausalLM.from_pretrained(
87
+ model_id,
88
+ torch_dtype="bfloat16",
89
+ device_map="auto" # auto-dispatch to available GPU(s)
90
+ )
91
 
92
+ # 3️⃣ Build a Lean-style prompt
93
+ prompt = "<user>Theorem foo …</user><assistant>"
94
 
95
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
96
 
97
+ # 4️⃣ Generate the next proof steps
98
+ out = model.generate(
99
+ **inputs,
100
+ max_new_tokens=256,
101
+ temperature=0.7,
102
+ top_p=0.9,
103
+ )
104
+ print(tok.decode(out[0], skip_special_tokens=True))