metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-5-1e6
results: []
qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-5-1e6
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 5.9301
- Logps: -88.3847
- Logits: -1.2661
- Objective: 5.9752
- Dpo Loss: 3.0906
- Regularize: 5.9752
- Ranking Simple: 0.5134
- Ranking Idealized: 0.5093
- Ranking Idealized Expo: 0.5093
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
---|---|---|---|---|---|---|---|---|---|---|---|
1.7171 | 0.2834 | 50 | 0.9452 | -91.4216 | -1.3980 | 0.9804 | 0.8391 | 0.9804 | 0.5114 | 0.5093 | 0.5093 |
4.4116 | 0.5668 | 100 | 2.2889 | -91.3584 | -1.3646 | 2.2847 | 1.3937 | 2.2847 | 0.5145 | 0.5093 | 0.5093 |
5.641 | 0.8503 | 150 | 3.6592 | -89.6013 | -1.3612 | 3.6993 | 1.8989 | 3.6993 | 0.5124 | 0.5093 | 0.5093 |
5.6662 | 1.1337 | 200 | 4.9017 | -91.8203 | -1.3129 | 5.1434 | 2.5622 | 5.1434 | 0.5134 | 0.5093 | 0.5093 |
5.0544 | 1.4171 | 250 | 4.6457 | -89.6596 | -1.2958 | 4.6981 | 2.3884 | 4.6981 | 0.5093 | 0.5093 | 0.5093 |
4.799 | 1.7005 | 300 | 5.0697 | -89.6459 | -1.3128 | 5.1481 | 2.5371 | 5.1481 | 0.5114 | 0.5093 | 0.5093 |
4.3968 | 1.9839 | 350 | 5.4045 | -88.5459 | -1.2879 | 5.3636 | 2.7971 | 5.3636 | 0.5103 | 0.5093 | 0.5093 |
3.8148 | 2.2674 | 400 | 5.7626 | -88.2542 | -1.2680 | 5.8200 | 2.9398 | 5.8200 | 0.5093 | 0.5093 | 0.5093 |
3.4169 | 2.5508 | 450 | 5.9539 | -88.0116 | -1.2897 | 6.1065 | 3.1384 | 6.1065 | 0.5145 | 0.5093 | 0.5093 |
2.988 | 2.8342 | 500 | 5.9854 | -87.9506 | -1.2856 | 6.0183 | 3.1318 | 6.0183 | 0.5093 | 0.5093 | 0.5093 |
2.4859 | 3.1176 | 550 | 6.1946 | -88.5030 | -1.2805 | 6.2029 | 3.1790 | 6.2029 | 0.5103 | 0.5093 | 0.5093 |
2.0539 | 3.4010 | 600 | 5.9332 | -88.1616 | -1.2651 | 6.0318 | 3.1111 | 6.0318 | 0.5114 | 0.5093 | 0.5093 |
1.664 | 3.6845 | 650 | 5.9239 | -88.6992 | -1.2608 | 5.9851 | 3.0968 | 5.9851 | 0.5114 | 0.5093 | 0.5093 |
1.3502 | 3.9679 | 700 | 5.9176 | -88.5236 | -1.2647 | 5.9571 | 3.0895 | 5.9571 | 0.5134 | 0.5093 | 0.5093 |
1.0052 | 4.2513 | 750 | 5.9642 | -88.3618 | -1.2630 | 6.0061 | 3.1036 | 6.0061 | 0.5134 | 0.5093 | 0.5093 |
0.8548 | 4.5347 | 800 | 5.9238 | -88.3534 | -1.2662 | 5.9711 | 3.0853 | 5.9711 | 0.5134 | 0.5093 | 0.5093 |
0.7765 | 4.8181 | 850 | 5.9323 | -88.3874 | -1.2660 | 5.9770 | 3.0916 | 5.9770 | 0.5134 | 0.5093 | 0.5093 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1