hZzy's picture
End of training
403dfc0 verified
|
raw
history blame
5.2 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.005-5e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.005-5e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3951
  • Logps: -195.4572
  • Logits: -3.2699
  • Objective: 0.3956
  • Dpo Loss: 0.6771
  • Regularize: 0.3956
  • Ranking Simple: 0.5661
  • Ranking Idealized: 0.9194
  • Ranking Idealized Expo: 0.5310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
0.4052 0.2834 50 0.4107 -129.0883 -1.8292 0.4120 0.6914 0.4120 0.5372 0.9194 0.5310
0.3407 0.5668 100 0.4017 -173.3319 -2.5066 0.4063 0.6839 0.4063 0.5548 0.9194 0.5310
0.2596 0.8503 150 0.4017 -188.6395 -2.4464 0.4052 0.6806 0.4052 0.5424 0.9194 0.5310
0.1965 1.1337 200 0.4002 -193.1247 -2.5977 0.4041 0.6801 0.4041 0.5589 0.9194 0.5310
0.1784 1.4171 250 0.3990 -189.4701 -2.7528 0.4023 0.6802 0.4023 0.5620 0.9194 0.5310
0.1717 1.7005 300 0.4021 -195.7304 -2.8777 0.4042 0.6799 0.4042 0.5455 0.9194 0.5310
0.1527 1.9839 350 0.3960 -211.6068 -3.1101 0.3970 0.6760 0.3970 0.5558 0.9194 0.5310
0.1267 2.2674 400 0.3981 -201.0368 -3.2515 0.3998 0.6776 0.3998 0.5620 0.9194 0.5310
0.1121 2.5508 450 0.3957 -192.7809 -2.9523 0.3976 0.6782 0.3976 0.5620 0.9194 0.5310
0.1063 2.8342 500 0.3941 -195.7920 -3.2835 0.3949 0.6760 0.3949 0.5671 0.9194 0.5310
0.0891 3.1176 550 0.3956 -196.1659 -3.1953 0.3960 0.6777 0.3960 0.5610 0.9194 0.5310
0.0749 3.4010 600 0.3962 -194.1237 -3.1966 0.3973 0.6781 0.3973 0.5744 0.9194 0.5310
0.062 3.6845 650 0.3956 -195.3244 -3.2412 0.3967 0.6778 0.3967 0.5702 0.9194 0.5310
0.0583 3.9679 700 0.3956 -196.4469 -3.2432 0.3961 0.6772 0.3961 0.5640 0.9194 0.5310
0.0451 4.2513 750 0.3952 -195.4398 -3.2666 0.3955 0.6771 0.3955 0.5671 0.9194 0.5310
0.0438 4.5347 800 0.3952 -195.2319 -3.2693 0.3956 0.6771 0.3956 0.5661 0.9194 0.5310
0.0408 4.8181 850 0.3951 -195.5095 -3.2704 0.3956 0.6771 0.3956 0.5661 0.9194 0.5310

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1