hZzy's picture
End of training
69aaa48 verified
|
raw
history blame
3.48 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-EXPERIMENT-1K-5e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-EXPERIMENT-1K-5e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 1521.1873
  • Logps: -79.1168
  • Logits: -1.0707
  • Objective: 1520.4889
  • Dpo Loss: 1520.4889
  • Regularize: 1520.4889
  • Ranking Simple: 0.5258
  • Ranking Idealized: 0.5093
  • Ranking Idealized Expo: 0.5093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
932.0532 0.2834 50 928.5909 -90.5890 -1.5321 972.7211 972.7211 972.7211 0.5103 0.5093 0.5093
1035.9887 0.5668 100 1589.5358 -80.1508 -1.3577 1629.7952 1629.7952 1629.7952 0.5145 0.5093 0.5093
835.8459 0.8503 150 1554.2150 -79.1304 -1.1902 1554.7245 1554.7245 1554.7245 0.5238 0.5093 0.5093
353.4232 1.1337 200 1601.4404 -77.8605 -1.1493 1618.9882 1618.9882 1618.9882 0.5279 0.5093 0.5093
363.333 1.4171 250 1571.6953 -78.8053 -1.0661 1577.6245 1577.6245 1577.6245 0.5227 0.5093 0.5093
267.0769 1.7005 300 1533.1350 -79.3922 -1.0587 1538.6410 1538.6410 1538.6410 0.5227 0.5093 0.5093
287.4463 1.9839 350 1521.1865 -79.1168 -1.0707 1520.4884 1520.4884 1520.4884 0.5258 0.5093 0.5093

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1