h4lo's picture
update model card README.md
e870ccb
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: my_awesome_eli5_clm-model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          config: default
          split: ca_test
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.1959

my_awesome_eli5_clm-model

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3071
  • Rouge1: 0.1959
  • Rouge2: 0.1013
  • Rougel: 0.1685
  • Rougelsum: 0.1683
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.7637 0.1277 0.0387 0.1065 0.1066 19.0
No log 2.0 124 2.5350 0.1408 0.0506 0.1165 0.1165 19.0
No log 3.0 186 2.4431 0.1503 0.0589 0.1245 0.1245 19.0
No log 4.0 248 2.3946 0.1774 0.0796 0.1502 0.1501 19.0
No log 5.0 310 2.3601 0.19 0.0939 0.1631 0.1631 19.0
No log 6.0 372 2.3400 0.1952 0.0993 0.1676 0.1676 19.0
No log 7.0 434 2.3238 0.196 0.1003 0.1682 0.1681 19.0
No log 8.0 496 2.3140 0.1973 0.1017 0.1693 0.1692 19.0
2.7599 9.0 558 2.3084 0.1957 0.1009 0.1686 0.1682 19.0
2.7599 10.0 620 2.3071 0.1959 0.1013 0.1685 0.1683 19.0

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3