gyr66's picture
End of training
fcc7a18
|
raw
history blame
2.29 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RoBERTa-ext-large-crf-chinese-finetuned-ner
    results: []

RoBERTa-ext-large-crf-chinese-finetuned-ner

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7186
  • Precision: 0.6813
  • Recall: 0.7573
  • F1: 0.7173
  • Accuracy: 0.9639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0197 1.0 503 0.6375 0.6663 0.7314 0.6973 0.9621
0.0251 2.0 1006 0.6048 0.6494 0.7435 0.6933 0.9611
0.0176 3.0 1509 0.6196 0.6669 0.7389 0.7011 0.9618
0.0116 4.0 2012 0.6361 0.6511 0.7560 0.6997 0.9624
0.0082 5.0 2515 0.6682 0.6746 0.7387 0.7052 0.9622
0.0067 6.0 3018 0.6587 0.6715 0.7409 0.7045 0.9635
0.0046 7.0 3521 0.6846 0.6770 0.7613 0.7167 0.9636
0.0019 8.0 4024 0.7081 0.6766 0.7510 0.7118 0.9630
0.0014 9.0 4527 0.7064 0.6812 0.7553 0.7163 0.9641
0.001 10.0 5030 0.7186 0.6813 0.7573 0.7173 0.9639

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0