gyr66's picture
Update README.md
ac4f14e
metadata
base_model: gyr66/RoBERTa-ext-large-chinese-finetuned-ner
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Ernie-3.0-large-crf-chinese-finetuned-ner
    results: []
datasets:
  - gyr66/privacy_detection
language:
  - zh
library_name: transformers
pipeline_tag: token-classification

RoBERTa-ext-large-crf-chinese-finetuned-ner

This model is a fine-tuned version of gyr66/RoBERTa-ext-large-chinese-finetuned-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5907
  • Precision: 0.7278
  • Recall: 0.75
  • F1: 0.7387
  • Accuracy: 0.9629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0061 1.0 503 0.6739 0.6747 0.7457 0.7084 0.9608
0.0078 2.0 1006 0.6343 0.7083 0.7518 0.7294 0.9622
0.0072 3.0 1509 0.6237 0.6867 0.7621 0.7224 0.9607
0.0052 4.0 2012 0.5929 0.7136 0.7616 0.7368 0.9635
0.0031 5.0 2515 0.5907 0.7278 0.75 0.7387 0.9629
0.0014 6.0 3018 0.6080 0.7172 0.7558 0.7360 0.9636
0.001 7.0 3521 0.6179 0.7198 0.7586 0.7387 0.9637
0.0005 8.0 4024 0.6208 0.7211 0.7518 0.7361 0.9632
0.0004 9.0 4527 0.6169 0.7271 0.7487 0.7378 0.9636
0.0002 10.0 5030 0.6202 0.7266 0.7495 0.7379 0.9636

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0