bilma / modeling_bilma.py
guillermoruiz's picture
Upload TFBilma
8527d26 verified
raw
history blame
19.8 kB
from transformers import TFPreTrainedModel, PreTrainedTokenizer
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.layers import Layer, Dense, concatenate, Input, add, Dropout, LayerNormalization, MultiHeadAttention, Embedding
import tensorflow as tf
import numpy as np
from typing import Dict
import re
import unicodedata
from configuration_bilma import BilmaConfig
# copied from preprocessing.py
BLANK = ' '
RE_OPS = re.I | re.M | re.S
RE_USR = re.compile(r"""@\S+""", RE_OPS)
RE_TAG = re.compile(r"""#\S+""", RE_OPS)
RE_URL = re.compile(r"""(http|ftp|https)://\S+""", RE_OPS)
RE_NUM = re.compile(r"""[-+]?\d+\.?\d*""", RE_OPS)
SYMBOLS_ = "()[]ΒΏ?Β‘!{}~<>|"
SYMBOLS = set(";:,.@\\-\"/" + SYMBOLS_)
# ------------------
# Class declaration
# ------------------
class TFBilma(TFPreTrainedModel):
config_class = BilmaConfig
main_input_name = "input_ids"
#base_model_prefix = "bilma"
def __init__(self, config):
self.seq_max_length = config.seq_max_length
super().__init__(config)
#if config.weights == "spanish":
# my_resources = importlib_resources.files("hf_bilma")
# model_file = str((my_resources / "bilma_dataset_small_epoch-1_part-60.h5").joinpath())
# self.model = bm.load(model_file)
#else:
self.model = bilma(num_enc=config.num_hidden_layers,
embed_dim=config.hidden_size,
max_length=config.seq_max_length,
num_heads=config.num_attention_heads,
ff_dim=config.hidden_size,
vocab_size=config.vocab_size,
rate=config.hidden_dropout_prob)
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
dummies = {}
for key, spec in self.input_signature.items():
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
if spec.shape[0] is None:
dummy_shape[0] = 1
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
return dummies
@property
def input_signature(self) -> Dict[str, tf.TensorSpec]:
sig = {}
sig["input_ids"] = tf.TensorSpec([None, self.seq_max_length], tf.int32, name="input_ids")
return sig
def call(self, inputs):
#if isinstance(tensor, dict) and len(tensor) == 0:
# return self.model(self.dummy_inputs)
ins = tf.cast(inputs["input_ids"], tf.float32)
output = {"logits":self.model(ins)}
return output
#
# Copied from transformer_text.py
# -------------------------------
class EncoderBlock(Layer):
def __init__(self, layer_num, patch_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.ln = layer_num
self.p_d = patch_dim
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self.att = MultiHeadAttention(num_heads=num_heads, key_dim=patch_dim, name=f"bilma/MHA_{layer_num}")
self.ffn = Sequential(
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
# Conv1D(patch_dim, kernel_size=1),]
[Dense(ff_dim, activation=tf.nn.gelu, name=f"bilma/dense1_{layer_num}"),
Dense(patch_dim, name=f"bilma/dense2_{layer_num}")]
)
#self.layernorm0 = LayerNormalization(epsilon=1e-6)
self.layernorm1 = LayerNormalization(epsilon=1e-6, name=f"ln1_{layer_num}")
self.layernorm2 = LayerNormalization(epsilon=1e-6, name=f"ln2_{layer_num}")
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
def get_config(self):
config = super(EncoderBlock, self).get_config()
config.update({"layer_num":self.ln, "patch_dim":self.p_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, inputs, training=False):
#inputs = self.layernorm0(inputs)
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(add([inputs, attn_output]))
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(add([out1, ffn_output]))
class DecoderBlock(Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(DecoderBlock, self).__init__(**kwargs)
self.e_d = embed_dim
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self.att1 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.att2 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = Sequential(
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
# Conv1D(embed_dim, kernel_size=1),]
[Dense(ff_dim, activation=tf.nn.gelu),
Dense(embed_dim),]
)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
self.dropout3 = Dropout(rate)
def get_config(self):
config = super(DecoderBlock, self).get_config()
config.update({"embed_dim":self.e_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, inputs, encoder_output, look_ahead_mask, padding_mask, training=None):
y, attn_output1 = self.att1(inputs, inputs, attention_mask=look_ahead_mask, return_attention_scores=True)
y = self.dropout1(y, training=training)
y = add([inputs, y])
out1 = self.layernorm1(y)
y, attn_encoder = self.att2(out1, encoder_output, attention_mask=padding_mask, return_attention_scores=True)
y = self.dropout2(y, training=training)
y = add([out1, y])
out2 = self.layernorm1(y)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
final_output = self.layernorm2(out2 + ffn_output)
return final_output, attn_output1, attn_encoder
class Encoder(Layer):
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.n = n
self.embed_dim = embed_dim
self.max_length = max_length
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self._layers = [EncoderBlock(i, embed_dim, num_heads, ff_dim, rate=0.1, name=f"enc_block_{i}") for i in range(n)]
self.pe = positional_encoding(self.max_length, self.embed_dim)
def get_config(self):
config = super(Encoder, self).get_config()
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, x, training=False):
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
x = x + self.pe[:, :tf.shape(x)[1], :]
for layer in self._layers:
x = layer(x, training)
return x
class Decoder(Layer):
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.n = n
self.embed_dim = embed_dim
self.max_length = max_length
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self._layers = [DecoderBlock(embed_dim, num_heads, ff_dim, rate=0.1) for _ in range(n)]
self.pe = positional_encoding(self.max_length, self.embed_dim)
def get_config(self):
config = super(Decoder, self).get_config()
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, x, encoder_output, look_ahead_mask, padding_mask, training):
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
x = x + self.pe[:, :tf.shape(x)[1], :]
for layer in self._layers:
x, self_att, enc_att = layer(x, encoder_output, look_ahead_mask, padding_mask, training)
return x
# =========================================
# M A S K S
# =========================================
def create_padding_mask(seq):
"""
For self-attention
seq shape(bs, max_length, emb_dim)
output shape (bs, max_length, max_length)
"""
mask = tf.cast(tf.not_equal(seq, 0), tf.bool)
mask = tf.reduce_any(mask, 2)
mask = tf.repeat(mask, seq.shape[1], 0)
mask = tf.reshape(mask, (-1,seq.shape[1], seq.shape[1]))
return tf.cast(mask, tf.float32)
def create_cross_padding_mask(seq, target_seq):
"""
For cross-attention
seq shape(bs, k, image_features)
target_seq(bs, max_length, emb_dim)
output shape (bs, max_length, k)
"""
mask = tf.cast(tf.not_equal(target_seq, 0), tf.bool)
mask = tf.reduce_any(mask, 2)
mask = tf.repeat(mask, seq.shape[1], 0)
mask = tf.reshape(mask, (-1, tf.shape(seq)[1], tf.shape(target_seq)[1]))
mask = tf.transpose(mask, [0, 2, 1])
return mask
def create_look_ahead_mask(seq):
"""
seq shape(bs, max_length, emb_dim)
output 2D matrix of shape (bs, max_length, max_length) with ones on the diagonal and below.
"""
size = seq.shape[1]
mask = tf.linalg.band_part(tf.ones((size, size)), -1, 0)
mask = tf.expand_dims(mask, 0)
mask = tf.repeat(mask, tf.shape(seq)[0], 0)
return mask
def create_masks(seq, target_seq):
decoder_mask = create_padding_mask(target_seq)
decoder_mask *= create_look_ahead_mask(target_seq)
cross_att_mask = create_cross_padding_mask(seq, target_seq)
return decoder_mask, cross_att_mask
def create_masks_looking_ahead(seq, target_seq):
decoder_mask = create_padding_mask(target_seq)
cross_att_mask = create_cross_padding_mask(seq, target_seq)
return decoder_mask, cross_att_mask
# =========================================
# P O S I T I O N A L E N C O D I N G
# =========================================
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
@tf.autograph.experimental.do_not_convert
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
class PatchEncoder(Layer):
def __init__(self, num_patches, projection_dim, **kwargs):
super(PatchEncoder, self).__init__(**kwargs)
self.num_patches = num_patches
self.projection_dim = projection_dim
self.projection = Dense(units=projection_dim)
self.position_embedding = Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def get_config(self):
config = super(PatchEncoder, self).get_config()
config.update({"num_patches": self.num_patches, "projection_dim":self.projection_dim})
return config
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
# Copied from preprocessing.py
# ----------------------------
def norm_chars(text):
L = []
for u in unicodedata.normalize('NFD', text):
o = ord(u)
if 0x300 <= o and o <= 0x036F:
continue
if u in ('\n', '\r', BLANK, '\t'):
if len(L) == 0:
continue
u = BLANK
if u in SYMBOLS:
if len(L) > 0 and L[-1] != BLANK:
L.append(BLANK)
L.append(u)
L.append(BLANK)
continue
L.append(u)
return "".join(L)
def preprocess(text):
text = RE_URL.sub("_url ", text)
text = RE_USR.sub("_usr ", text)
#text = RE_TAG.sub("_htag ", text)
#text = RE_NUM.sub("0 ", text)
text = re.sub(r"&amp;", "&", text)
text = re.sub(r"&gt;", ">", text)
text = re.sub(r"&lt;", "<", text)
#text = norm_chars(text.lower())
text = re.sub(r"j(a|e|i)[jaei]+", r"j\1j\1", text)
text = re.sub(r"h(a|e|i)[haei]+", r"j\1j\1", text)
return re.sub(r"\s+", BLANK, text)
# Copied from wordpiece_tokenizer_ex.py
# -------------------------------------
class BaseTokenizer():
def __init__(self, vocab_file, unk_token="[UNK]", end_token="[END]", mask_token="[MASK]"):
self.word2idx = {}
self.idx2word = []
c = 0
with open(vocab_file, "r", encoding="utf8") as f:
while True:
line = f.readline()
if not line:
break
self.word2idx[line[0:-1]] = c
self.idx2word.append(line[0:-1])
c += 1
self.n_jobs = 2
self.UNK = unk_token
self.END = end_token
self.MASK = mask_token
def split(self, s):
split = []
i = 0
while i < len(s):
for j in range(i, len(s)):
if (i==j and s[j:j+6] == self.MASK):
split.append(self.MASK)
i = j + 6
break
if (s[j].isalnum()):
continue
if (j==i):
if (s[j] != " "):
split.append(s[i:j+1])
i = j + 1
break
split.append(s[i:j])
i = j
break
else:
split.append(s[i:j+1])
i=j+1
return split
def tokenize(self, S):
#return Parallel(n_jobs=self.n_jobs)(delayed(self._tokenize)(s) for s in S)
return [self._tokenize(s) for s in S]
def detokenize(self, S, human_readable=True):
#return Parallel(n_jobs=self.n_jobs)(delayed(self._detokenize)(s) for s in S)
return [self._detokenize(s, human_readable=human_readable) for s in S]
def _tokenize(self, s):
tokens = []
s = s.rstrip('\n')
for w in self.split(s):
if w in self.word2idx:
tokens.append(self.word2idx[w])
else:
if (len(w)==1):
tokens.append(self.word2idx["[UNK]"])
continue
subtoken = []
l = 0
while len(w)>l:
for i in range(len(w),l-1,-1):
if (w[0: i] in self.word2idx):
subtoken.append(self.word2idx[w[0: i]])
break
if (i == l):
subtoken = [self.word2idx["[UNK]"]]
break
w = "##" + w[i: ]
l = 2
tokens += subtoken
return tokens
def _detokenize(self, tokens, human_readable=True):
sentence = []
start = 0 if human_readable == False else 1
for t in tokens[start:]:
c = self.idx2word[t]
if (human_readable and c == self.END):
break
sentence.append(c)
return sentence
# copied from bilma_model.py
# --------------------------
def loss_function(ignore_id=0):
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
def loss(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
sum_ = tf.reduce_sum(mask,axis=1)
loss_ = tf.math.divide_no_nan(tf.reduce_sum(loss_, axis=1), sum_)
return loss_
return loss
def accuracy_function(ignore_id=0):
def acc_mlm(real, pred):
accuracies = tf.equal(tf.cast(real, tf.int64), tf.argmax(pred, axis=2))
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
accuracies = tf.math.logical_and(mask, accuracies)
accuracies = tf.cast(accuracies, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.math.divide_no_nan(tf.reduce_sum(accuracies), tf.reduce_sum(mask))
return acc_mlm
def bilma(num_enc=6, embed_dim=300, max_length=50, num_heads=6, ff_dim=512, vocab_size=9739, rate=0.1):
capt_inputs_ids = Input(shape=(max_length, ), name='input_ids')
capt_embedding = Embedding(vocab_size, embed_dim, mask_zero=False, name="bilma/embedding")
capt_inputs = capt_embedding(capt_inputs_ids)
enc = Encoder(num_enc, embed_dim, max_length, num_heads, ff_dim, rate=rate, name="bilma/encoder")
enc_output = enc(capt_inputs)
fin_output = Dense(vocab_size, use_bias=True, name="bilma/dense_final")(enc_output)
caption_model = Model(inputs=capt_inputs_ids, outputs=[fin_output], name="bilma_model")
return caption_model
def load(model_file):
custom_objects={"EncoderBlock": EncoderBlock,
"Encoder": Encoder,
"loss": loss_function(),
"acc_mlm":accuracy_function(),
}
return load_model(model_file, custom_objects=custom_objects)
class BilmaTokenizer():
def __init__(self, vocab_file, max_length):
self.tokenizer = BaseTokenizer(vocab_file)
#self.emo_labels = "β€πŸ‘ŒπŸ‘πŸ’”πŸ˜„πŸ˜ŠπŸ˜ŒπŸ˜πŸ˜’πŸ˜˜πŸ˜‘πŸ˜’πŸ˜­πŸ€”πŸ₯Ί"
self.max_length = max_length
self.START = 2
self.END = 3
self.PAD = 0
self.MASK = 4
def tokenize(self, text):
text = [preprocess(t) for t in text]
tokens = tf.ragged.constant(self.tokenizer.tokenize(text), tf.int32)
count, _ = tokens.bounding_shape()
starts = tf.fill([count,1], self.START)
ends = tf.fill([count,1], self.END)
tokens = tf.concat([starts, tokens[:, 0: self.max_length - 2], ends], axis=1)
tokens = tokens.to_tensor(self.PAD, shape=(len(text), self.max_length))
return tokens.numpy()
def detokenize(self, tokens, human_readable=True):
words = self.tokenizer.detokenize(tokens, human_readable=human_readable)
if (human_readable==True):
return [" ".join(w) for w in words]
text = tf.strings.reduce_join(words, separator=' ', axis=-1)
return text
def top_k(self, predictions, positions, k=10):
top = []
for p, m in zip(predictions, positions):
top_k = self.detokenize([tf.argsort(p[m])[-k:][::-1]], False).numpy()[0].decode('utf8').split()
top.append(top_k)
return top
def decode_emo(self, predictions):
emo = tf.argmax(predictions, axis=-1)
return [self.emo_labels[i] for i in emo]