guidobenb's picture
End of training
d275a4f verified
|
raw
history blame
2.42 kB
metadata
license: cc-by-nc-4.0
base_model: s2w-ai/DarkBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: DarkBERT-finetuned-ner
    results: []

DarkBERT-finetuned-ner

This model is a fine-tuned version of s2w-ai/DarkBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6416
  • Precision: 0.4628
  • Recall: 0.5470
  • F1: 0.5014
  • Accuracy: 0.8901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 111 0.3933 0.3563 0.4337 0.3912 0.8726
No log 2.0 222 0.3491 0.4345 0.5672 0.4921 0.8886
No log 3.0 333 0.3991 0.4284 0.5405 0.4780 0.8795
No log 4.0 444 0.3969 0.4565 0.5797 0.5108 0.8877
0.2744 5.0 555 0.4276 0.4737 0.5690 0.5170 0.8887
0.2744 6.0 666 0.5237 0.4918 0.5637 0.5253 0.8862
0.2744 7.0 777 0.5472 0.4855 0.5503 0.5159 0.8877
0.2744 8.0 888 0.6319 0.4581 0.5699 0.5079 0.8855
0.2744 9.0 999 0.6511 0.4901 0.5744 0.5289 0.8901
0.0627 10.0 1110 0.6758 0.4900 0.5681 0.5262 0.8899

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1