gsar78 commited on
Commit
57f812d
·
verified ·
1 Parent(s): 379f827

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - el
5
+ pipeline_tag: text-generation
6
+ ---
7
+ # Model Description
8
+
9
+ This is an instruction tuned model based on the gsar78/GreekLlama-1.1B-base model.
10
+ The dataset used is 52k row instruction/response pairs all in Greek language
11
+
12
+ Notice: The model is for experimental & research purposes.
13
+
14
+ # Usage
15
+
16
+ To use you can just run the following in a Colab configured with a GPU:
17
+
18
+ ```python
19
+ from transformers import AutoTokenizer, AutoModelForCausalLM
20
+ import transformers
21
+ import torch
22
+
23
+
24
+ # Load the tokenizer and model
25
+ tokenizer = AutoTokenizer.from_pretrained("gsar78/GreekLlama-1.1B-it")
26
+ model = AutoModelForCausalLM.from_pretrained("gsar78/GreekLlama-1.1B-it")
27
+
28
+
29
+ # Check if CUDA is available and move the model to GPU if possible
30
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
+ model.to(device)
32
+
33
+ prompt = "Ποιά είναι τα δύο βασικά πράγματα που πρέπει να γνωρίζω για την Τεχνητή Νοημοσύνη:"
34
+
35
+ # Tokenize the input prompt
36
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
37
+
38
+ # Generate the output
39
+ generation_params = {
40
+ #"max_new_tokens": 250, # Adjust the number of tokens generated
41
+ "do_sample": True, # Enable sampling to diversify outputs
42
+ "temperature": 0.1, # Sampling temperature
43
+ "top_p": 0.9, # Nucleus sampling
44
+ "num_return_sequences": 1,
45
+ }
46
+
47
+ output = model.generate(**inputs, **generation_params)
48
+
49
+ # Decode the generated text
50
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
51
+
52
+ print("Generated Text:")
53
+ print(generated_text)
54
+ ```