playerzer0x's picture
Model card auto-generated by SimpleTuner
0ce222a verified
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'cplbrkp scene, a woman wearing a reverse crtdt hot swingers tee throwing a man''s luggage off a balcony, outdoors, dv cam'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'a light-skinned woman, holding reverse crtdt hitters only tee, wearing black clothes, standing on top of an area rug, a projector screen in the background with windows on walls, woman is looking at the tee, two art stands on either side of the woman with sculptures on them'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'the back of a tan-skinned man, wearing reverse crtdt hot swingers tee and white sneakers and dark blue shorts, a light-skinned woman, wearing black clothes, right half of the room is dark and left half is lit up, crtdt hitters only tee draped over the couch'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'a tan-skinned man, wearing white crtdt hot swingers tee and white sneakers and dark blue shorts, holding a smartphone, wearing glasses, hardwood floor, boxes in the background'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'man wearing a reverse crtdt hitters only tee'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
---
# growwithdaisy/crtdt_20241212_160352_20241216_162913
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
man wearing a reverse crtdt hitters only tee
```
## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `69`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 96
- Training steps: 2500
- Learning rate: 0.0002
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad norm: 2.0
- Effective batch size: 8
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 4
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
### LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1,
"linear_dim": 1000000,
"linear_alpha": 1,
"factor": 16,
"init_lokr_norm": 0.001,
"apply_preset": {
"target_module": [
"FluxTransformerBlock",
"FluxSingleTransformerBlock"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### crtdt_20241212_160352-512
- Repeats: 0
- Total number of images: ~60
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### crtdt_20241212_160352-768
- Repeats: 0
- Total number of images: ~48
- Total number of aspect buckets: 7
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### crtdt_20241212_160352-1024
- Repeats: 0
- Total number of images: ~48
- Total number of aspect buckets: 7
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'playerzer0x/growwithdaisy/crtdt_20241212_160352_20241216_162913'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "man wearing a reverse crtdt hitters only tee"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```