gregorgabrovsek's picture
Update README.md
6719c19
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: SloBertAA_Top20_WithoutOOC_082023
    results: []

SloBertAA_Top20_WithoutOOC_082023

This model is a fine-tuned version of EMBEDDIA/sloberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8485
  • Accuracy: 0.8909
  • F1: 0.8908
  • Precision: 0.8914
  • Recall: 0.8909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5035 1.0 22717 0.4645 0.8498 0.8495 0.8603 0.8498
0.3863 2.0 45434 0.4249 0.8679 0.8680 0.8703 0.8679
0.3005 3.0 68151 0.4785 0.8695 0.8700 0.8743 0.8695
0.2094 4.0 90868 0.5345 0.8771 0.8769 0.8801 0.8771
0.1878 5.0 113585 0.6158 0.8793 0.8792 0.8817 0.8793
0.1256 6.0 136302 0.6737 0.8847 0.8847 0.8860 0.8847
0.0999 7.0 159019 0.7364 0.8855 0.8857 0.8870 0.8855
0.0633 8.0 181736 0.8041 0.8863 0.8862 0.8874 0.8863
0.0338 9.0 204453 0.8479 0.8877 0.8877 0.8891 0.8877
0.0178 10.0 227170 0.8485 0.8909 0.8908 0.8914 0.8909

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.8.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2