|
--- |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: SloBertAA_Top10_WithoutOOC_082023 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SloBertAA_Top10_WithoutOOC_082023 |
|
|
|
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4660 |
|
- Accuracy: 0.9423 |
|
- F1: 0.9423 |
|
- Precision: 0.9425 |
|
- Recall: 0.9423 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.2996 | 1.0 | 14812 | 0.2914 | 0.9179 | 0.9174 | 0.9187 | 0.9179 | |
|
| 0.2229 | 2.0 | 29624 | 0.2659 | 0.9333 | 0.9332 | 0.9338 | 0.9333 | |
|
| 0.1703 | 3.0 | 44436 | 0.2817 | 0.9347 | 0.9347 | 0.9355 | 0.9347 | |
|
| 0.1245 | 4.0 | 59248 | 0.3126 | 0.9377 | 0.9374 | 0.9376 | 0.9377 | |
|
| 0.0977 | 5.0 | 74060 | 0.3884 | 0.9335 | 0.9335 | 0.9347 | 0.9335 | |
|
| 0.0624 | 6.0 | 88872 | 0.4098 | 0.9395 | 0.9393 | 0.9397 | 0.9395 | |
|
| 0.0355 | 7.0 | 103684 | 0.4213 | 0.9400 | 0.9400 | 0.9402 | 0.9400 | |
|
| 0.0268 | 8.0 | 118496 | 0.4579 | 0.9388 | 0.9387 | 0.9390 | 0.9388 | |
|
| 0.016 | 9.0 | 133308 | 0.4531 | 0.9418 | 0.9418 | 0.9422 | 0.9418 | |
|
| 0.009 | 10.0 | 148120 | 0.4660 | 0.9423 | 0.9423 | 0.9425 | 0.9423 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.8.0 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|