trey-cat-sdxl-lora / README.md
greerben0's picture
Update README.md
e52ff62 verified
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: >-
      Photo of TREY cat as a guitarist, on stage, awesome, photorealistic,
      pyrotechnics, highly detailed
    output:
      url: download (3).png
  - text: a TREY cat on the floor
    output:
      url: image_0.png
  - text: a TREY cat on the floor
    output:
      url: image_1.png
  - text: a TREY cat on the floor
    output:
      url: image_2.png
  - text: Imagine TREY cat in an alien hellscape
    output:
      url: 7cf5c0e2-84a9-4d7a-91fc-40179b805c1b.jpeg
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a TREY cat
license: openrail++
pipeline_tag: text-to-image

SDXL LoRA DreamBooth - trey-cat-sdxl-lora

Prompt
Photo of TREY cat as a guitarist, on stage, awesome, photorealistic, pyrotechnics, highly detailed
Prompt
a TREY cat on the floor
Prompt
a TREY cat on the floor
Prompt
a TREY cat on the floor
Prompt
Imagine TREY cat in an alien hellscape

Model description

These are trey-cat-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('trey-cat-sdxl-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='trey-cat-sdxl-lora', filename='trey-cat-sdxl-lora_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('a TREY cat on the floor').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept Trey cat → use TREY cat in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.