|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_8_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-1b-frisian-cv-8 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_8_0 |
|
type: common_voice_8_0 |
|
config: fy-NL |
|
split: validation |
|
args: fy-NL |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.14290815597771747 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_8_0 |
|
type: common_voice_8_0 |
|
config: fy-NL |
|
split: test |
|
args: fy-NL |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.1413499060557884 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-1b-frisian-cv-8 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2131 |
|
- Wer: 0.1429 |
|
|
|
And on the test set: |
|
- Wer: 0.1413 |
|
|
|
## Model description |
|
|
|
This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 1 where |
|
I use the same training set as the XLSR-53 baseline. |
|
|
|
## Intended uses & limitations |
|
|
|
The intended use is for recognizing Frisian speech. |
|
|
|
Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0. |
|
|
|
## Training and evaluation data |
|
|
|
The training and evaluation splits used are the ones available in the Common Voice 8.0 Frisian subset. |
|
|
|
## Training procedure |
|
|
|
The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/). |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 6.0565 | 1.72 | 200 | 3.1053 | 1.0 | |
|
| 2.7675 | 3.45 | 400 | 1.1551 | 0.8611 | |
|
| 1.3474 | 5.17 | 600 | 0.4770 | 0.4397 | |
|
| 0.9617 | 6.9 | 800 | 0.3218 | 0.3343 | |
|
| 0.9058 | 8.62 | 1000 | 0.2741 | 0.2768 | |
|
| 0.9712 | 10.34 | 1200 | 0.2619 | 0.2505 | |
|
| 0.6908 | 12.07 | 1400 | 0.2288 | 0.2243 | |
|
| 0.745 | 13.79 | 1600 | 0.2288 | 0.2095 | |
|
| 0.7742 | 15.52 | 1800 | 0.2289 | 0.1979 | |
|
| 0.7231 | 17.24 | 2000 | 0.2198 | 0.1940 | |
|
| 0.6475 | 18.97 | 2200 | 0.2180 | 0.1992 | |
|
| 0.6421 | 20.69 | 2400 | 0.2133 | 0.1741 | |
|
| 0.5925 | 22.41 | 2600 | 0.1998 | 0.1747 | |
|
| 0.5608 | 24.14 | 2800 | 0.2212 | 0.1950 | |
|
| 0.5315 | 25.86 | 3000 | 0.2187 | 0.1624 | |
|
| 0.5362 | 27.59 | 3200 | 0.2057 | 0.1718 | |
|
| 0.563 | 29.31 | 3400 | 0.2090 | 0.1613 | |
|
| 0.4218 | 31.03 | 3600 | 0.2126 | 0.1531 | |
|
| 0.3826 | 32.76 | 3800 | 0.2084 | 0.1538 | |
|
| 0.356 | 34.48 | 4000 | 0.2115 | 0.1612 | |
|
| 0.2966 | 36.21 | 4200 | 0.2093 | 0.1536 | |
|
| 0.3377 | 37.93 | 4400 | 0.2061 | 0.1527 | |
|
| 0.321 | 39.66 | 4600 | 0.2121 | 0.1463 | |
|
| 0.2942 | 41.38 | 4800 | 0.2158 | 0.1441 | |
|
| 0.2931 | 43.1 | 5000 | 0.2173 | 0.1446 | |
|
| 0.2346 | 44.83 | 5200 | 0.2152 | 0.1436 | |
|
| 0.2543 | 46.55 | 5400 | 0.2066 | 0.1445 | |
|
| 0.2385 | 48.28 | 5600 | 0.2108 | 0.1432 | |
|
| 0.2726 | 50.0 | 5800 | 0.2131 | 0.1429 | |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|