greenw0lf's picture
update model card README.md
2a622cb
|
raw
history blame
2.45 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian-cv-8-10m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.7612841022711041

wav2vec2-large-xls-r-1b-frisian-cv-8-10m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1618
  • Wer: 0.7613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.7106 6.25 50 4.0034 1.0
3.4036 12.5 100 3.1030 1.0
3.7265 18.75 150 3.0466 1.0
3.2292 25.0 200 3.0166 1.0
3.1305 31.25 250 2.9699 1.0
3.0447 37.5 300 2.9144 1.0
2.9037 43.75 350 2.2919 0.9998
2.1115 50.0 400 1.3995 0.9429
1.3456 56.25 450 1.1093 0.8435
1.3206 62.5 500 1.1573 0.8112
1.0078 68.75 550 1.1746 0.7757
1.0674 75.0 600 1.1618 0.7613

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3