|
import os |
|
import sys |
|
import torch |
|
import warnings |
|
import hashlib |
|
import math |
|
import importlib |
|
import numpy as np |
|
from tqdm import tqdm |
|
from scipy.io import wavfile |
|
import librosa |
|
import pdb |
|
from uvr5_pack.lib_v5 import spec_utils |
|
from uvr5_pack.utils import _get_name_params, inference |
|
from uvr5_pack.lib_v5.model_param_init import ModelParameters |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
class _audio_pre_(): |
|
def __init__(self, model_path, device, is_half): |
|
self.model_path = model_path |
|
self.device = device |
|
self.data = { |
|
|
|
'postprocess': False, |
|
'tta': False, |
|
|
|
'window_size': 320, |
|
'agg': 10, |
|
'high_end_process': 'mirroring', |
|
} |
|
nn_arch_sizes = [ |
|
31191, |
|
33966,61968, 123821, 123812, 537238 |
|
] |
|
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes) |
|
model_size = math.ceil(os.stat(model_path).st_size / 1024) |
|
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size))) |
|
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None) |
|
model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest() |
|
param_name, model_params_d = _get_name_params(model_path, model_hash) |
|
|
|
mp = ModelParameters(model_params_d) |
|
model = nets.CascadedASPPNet(mp.param['bins'] * 2) |
|
cpk = torch.load(model_path, map_location='cpu') |
|
model.load_state_dict(cpk) |
|
model.eval() |
|
if is_half: |
|
model = model.half().to(device) |
|
else: |
|
model = model.to(device) |
|
|
|
self.mp = mp |
|
self.model = model |
|
|
|
def _path_audio_(self, music_file, ins_root=None, vocal_root=None): |
|
if ins_root is None and vocal_root is None: |
|
return "No save root." |
|
name = os.path.basename(music_file) |
|
if ins_root is not None: |
|
os.makedirs(ins_root, exist_ok=True) |
|
if vocal_root is not None: |
|
os.makedirs(vocal_root, exist_ok=True) |
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} |
|
bands_n = len(self.mp.param['band']) |
|
for d in range(bands_n, 0, -1): |
|
bp = self.mp.param['band'][d] |
|
if d == bands_n: |
|
X_wave[d], _ = librosa.core.load( |
|
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) |
|
if X_wave[d].ndim == 1: |
|
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) |
|
else: |
|
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) |
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse']) |
|
if d == bands_n and self.data['high_end_process'] != 'none': |
|
input_high_end_h = (bp['n_fft'] // 2 - bp['crop_stop']) + (self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start']) |
|
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :] |
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) |
|
aggresive_set = float(self.data['agg']/100) |
|
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']} |
|
with torch.no_grad(): |
|
pred, X_mag, X_phase = inference(X_spec_m, self.device, self.model, aggressiveness, self.data) |
|
|
|
if self.data['postprocess']: |
|
pred_inv = np.clip(X_mag - pred, 0, np.inf) |
|
pred = spec_utils.mask_silence(pred, pred_inv) |
|
|
|
y_spec_m = pred * X_phase |
|
v_spec_m = X_spec_m - y_spec_m |
|
|
|
if ins_root is not None: |
|
if self.data['high_end_process'].startswith('mirroring'): |
|
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp) |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp, input_high_end_h, input_high_end_) |
|
else: |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) |
|
print('%s instruments done' % name) |
|
|
|
file_name, ext = os.path.splitext(name) |
|
wavfile.write(os.path.join(ins_root, '和声_{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype(np.int16)) |
|
if vocal_root is not None: |
|
if self.data['high_end_process'].startswith('mirroring'): |
|
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp) |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_) |
|
else: |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) |
|
print('%s vocals done' % name) |
|
|
|
file_name, ext = os.path.splitext(name) |
|
wavfile.write(os.path.join(vocal_root, '{}{}'.format(file_name, ext)), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype(np.int16)) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
device = 'cuda' |
|
is_half = True |
|
model_path = 'uvr5_weights/5_HP-Karaoke-UVR.pth' |
|
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True) |
|
|
|
|
|
audio_folder = 'output' |
|
wav_files = [os.path.join(audio_folder, file) for file in os.listdir(audio_folder) if file.endswith('.wav')] |
|
|
|
|
|
save_path = 'echo' |
|
for wav_file in wav_files: |
|
pre_fun._path_audio_(wav_file, save_path, save_path) |
|
|